/* Lesson 13-1 */ /* File Name = les1301.sas 07/03/08 */ data gakusei; infile 'all08ae.prn' firstobs=2; input sex $ shintyou taijyuu kyoui jitaku $ kodukai carryer $ tsuuwa; if sex^='M' & sex^='F' then delete; proc print data=gakusei(obs=10); run; proc reg data=gakusei; : 回帰分析 model taijyuu=shintyou kyoui; : 複数変量を指定 output out=outreg1 predicted=pred1 residual=resid1; : 結果項目の保存 run; : proc print data=outreg1(obs=15); run; : proc plot data=outreg1; : 散布図を描く where shintyou^=. and taijyuu^=. and kyoui^=.; : 解析に使ったデータのみ plot taijyuu*shintyou; : plot taijyuu*kyoui; : plot taijyuu*pred1; : 観測値と予測値 plot resid1*pred1 /vref=0; : 残差と予測値(残差解析) plot resid1*shintyou/vref=0; : 残差と説明変量(残差解析) plot resid1*kyoui /vref=0; : 残差と説明変量(残差解析) plot resid1*taijyuu /vref=0; : 残差と目的変量(残差解析) run; : : proc univariate data=outreg1 plot normal; : 残差を正規プロットして確かめる var resid1; : run; :
SAS システム 2 23:46 Wednesday, July 2, 2008 Model: MODEL1 Dependent Variable: TAIJYUU Analysis of Variance Sum of Mean Source DF Squares Square F Value Prob>F Model 2 8304.72410 4152.36205 85.650 0.0001 Error 114 5526.78735 48.48059 C Total 116 13831.51145 Root MSE 6.96280 R-square 0.6004 Dep Mean 58.74701 Adj R-sq 0.5934 C.V. 11.85218 SAS システム 3 23:46 Wednesday, July 2, 2008 Parameter Estimates Parameter Standard T for H0: Variable DF Estimate Error Parameter=0 Prob > |T| INTERCEP 1 -107.476435 12.77239465 -8.415 0.0001 SHINTYOU 1 0.820443 0.07858785 10.440 0.0001 KYOUI 1 0.337119 0.08237995 4.092 0.0001 SAS システム 4 23:46 Wednesday, July 2, 2008 S H T K C I A J O A T R N I K I D R S P E T J Y T U R U R S O S Y Y O A K Y U E I B E O U U K A E W D D S X U U I U I R A 1 1 1 F 145.0 38.0 . J 10000 . . . 2 F 146.7 41.0 85 J 10000 Vodafone 6000 41.5377 -0.53768 3 F 148.0 42.0 . J 50000 . . . 4 F 148.0 43.0 80 J 50000 DoCoMo 4000 40.9187 2.08134 5 F 148.9 . . J 60000 . . . 6 F 149.0 45.0 . G 60000 . . . 7 F 150.0 46.0 86 40000 . 44.5823 1.41774 8 F 150.0 . . J 10000 softbank 80 . . 9 F 151.0 45.0 . J 20000 docomo 5000 . . 10 F 151.0 50.0 . G 60000 J-PHONE . . . 11 F 151.7 41.5 80 J 35000 . 43.9543 -2.45430 12 F 152.0 35.0 77 J 60000 DoCoMo 2000 43.1891 -8.18908 13 F 152.0 43.0 . J 20000 au 3500 . . 14 F 152.0 44.0 . 45000 DoCoMo 4000 . . 15 F 153.0 41.0 . J 125000 No . . . SAS システム 6 23:46 Wednesday, July 2, 2008 プロット : TAIJYUU*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ... 100 + A | A A TAIJYUU | A A A A A | B BABAB BACAA B B A AA | A A B A B BBA BAGBC ACAA AABBA 50 + A A AEB CDEAD BBACB A | A A B A A | | | 0 + --+-----------+-----------+-----------+-----------+-----------+- 140 150 160 170 180 190 SHINTYOU SAS システム 7 23:46 Wednesday, July 2, 2008 プロット : TAIJYUU*KYOUI. 凡例: A = 1 OBS, B = 2 OBS, ... 100 + A | A A TAIJYUU | A A AA A | A ACACFACCA A A | A A CCAAFBFKAAAA A 50 + A A AA FEHJCB | AA B B | | | 0 + ---+-----------+-----------+-----------+-----------+-- 40 60 80 100 120 KYOUI SAS システム 8 23:46 Wednesday, July 2, 2008 プロット : TAIJYUU*PRED1. 凡例: A = 1 OBS, B = 2 OBS, ... 100 + A | A A TAIJYUU | A A A A A | A BBBBAACB B ABAB A | A A BA ACBBABAADCDACA C C 50 + B CBEBCCDBEABB B | AA AB A | | | 0 + ---+-----------+-----------+-----------+-----------+-- 40 50 60 70 80 Predicted Value of TAIJYUU SAS システム 9 23:46 Wednesday, July 2, 2008 プロット : RESID1*PRED1. 凡例: A = 1 OBS, B = 2 OBS, ... | R 50 + e | s | A i 25 + A A d | A A u | A A A BA A A BAABB A A a 0 +---AA--BB---CBDBCCC-BABBBABAB-CCBDBCCA-B---BB---A-------- l | A A ABB AB B A AB B ACA A | A -25 + ---+------------+------------+------------+------------+-- 40 50 60 70 80 Predicted Value of TAIJYUU SAS システム 10 23:46 Wednesday, July 2, 2008 プロット : RESID1*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ... | R 50 + e | s | A i 25 + A A d | A A u | A A B A A CABAB B A a 0 +----------A-A-A-A-AAAEB-CDEAB-BACBB-BAGAC-CCCAA-B-A-A--A--------- l | A A C AA CB A A A BACAA A | A -25 + ---+-----------+-----------+-----------+-----------+-----------+-- 140 150 160 170 180 190 SHINTYOU SAS システム 11 23:46 Wednesday, July 2, 2008 プロット : RESID1*KYOUI. 凡例: A = 1 OBS, B = 2 OBS, ... | R 50 + e | s | A i 25 + A A d | A A u | A BB C ABDA B a 0 +----------------------B--C--GCEOBGBJBBE--B--A---A-------- l | AAACBAG BACA A | A -25 + ---+------------+------------+------------+------------+-- 40 60 80 100 120 KYOUI SAS システム 12 23:46 Wednesday, July 2, 2008 プロット : RESID1*TAIJYUU. 凡例: A = 1 OBS, B = 2 OBS, ... | R 50 + e | s | A i 25 + A A d | A A u | AAAAAB C AABAA AA a 0 +----------------BABDDFGDAE-CFEECACAE----A---------------- l | A A BE AB AAAD CAA | A -25 + ---+------------+------------+------------+------------+-- 20 40 60 80 100 TAIJYUU SAS システム 13 23:46 Wednesday, July 2, 2008 Univariate Procedure Variable=RESID1 Residual Moments N 117 Sum Wgts 117 Mean 0 Sum 0 Std Dev 6.902515 Variance 47.64472 Skewness 1.91015 Kurtosis 6.317003 USS 5526.787 CSS 5526.787 CV . Std Mean 0.638138 T:Mean=0 0 Pr>|T| 1.0000 Num ^= 0 117 Num > 0 44 M(Sign) -14.5 Pr>=|M| 0.0093 Sgn Rank -556.5 Pr>=|S| 0.1307 W:Normal 0.873643 Pr<W 0.0001 SAS システム 17 23:46 Wednesday, July 2, 2008 Univariate Procedure Variable=RESID1 Residual Histogram # Boxplot 35+* 1 * .* 2 * .*** 5 0 .****************** 36 +--+--+ .************************************ 71 *-----* -15+* 2 0 ----+----+----+----+----+----+----+- * may represent up to 2 counts SAS システム 18 23:46 Wednesday, July 2, 2008 Univariate Procedure Variable=RESID1 Residual Normal Probability Plot 35+ * | * * | *****++++++ | +++************ | *** ******************** -15+*++*+++++++ +----+----+----+----+----+----+----+----+----+----+ -2 -1 0 +1 +2
/* Lesson 13-2 */ /* File Name = les1302.sas 07/03/08 */ data gakusei; infile 'all08ae.prn' firstobs=2; input sex $ shintyou taijyuu kyoui jitaku $ kodukai carryer $ tsuuwa; if sex^='M' & sex^='F' then delete; : 性別不明は除外 if shintyou=. | taijyuu=. | kyoui=. then delete; : 欠損のあるデータは除外 proc print data=gakusei(obs=10); run; proc corr data=gakusei; : 相関係数 where sex='M'; : 男性について run; : : proc reg data=gakusei; : 回帰分析 model taijyuu=shintyou kyoui; : where sex='M'; : 男性について output out=outreg1 predicted=pred1 residual=resid1; : run; : proc print data=outreg1(obs=15); run; proc plot data=outreg1; where sex='M'; : 対象データについて plot taijyuu*shintyou; plot taijyuu*kyoui; plot taijyuu*pred1; plot resid1*(pred1 shintyou kyoui taijyuu)/vref=0; : まとめて記述 /* plot resid1*pred1 /vref=0; plot resid1*shintyou/vref=0; plot resid1*kyoui /vref=0; plot resid1*taijyuu /vref=0; */ run; proc univariate data=outreg1 plot normal; var resid1; run;
SAS システム 2 23:46 Wednesday, July 2, 2008 Correlation Analysis 5 'VAR' Variables: SHINTYOU TAIJYUU KYOUI KODUKAI TSUUWA Simple Statistics Variable N Mean Std Dev Sum Minimum Maximum SHINTYOU 72 172.5 5.8959 12421.1 156.0 185.0 TAIJYUU 72 64.8708 9.0821 4670.7 46.0000 100.0 KYOUI 72 87.9861 9.6641 6335.0 46.0000 112.0 KODUKAI 67 56358.2 66471.6 3776000 0 350000 TSUUWA 15 7056.7 4411.2 105850 350.0 15000.0 SAS システム 3 23:46 Wednesday, July 2, 2008 Correlation Analysis Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / Number of Observations SHINTYOU TAIJYUU KYOUI KODUKAI TSUUWA SHINTYOU 1.00000 0.39183 0.16090 0.09516 0.02004 0.0 0.0007 0.1770 0.4437 0.9435 72 72 72 67 15 TAIJYUU 0.39183 1.00000 0.38357 0.11042 0.29885 0.0007 0.0 0.0009 0.3737 0.2793 72 72 72 67 15 KYOUI 0.16090 0.38357 1.00000 -0.37945 -0.44758 0.1770 0.0009 0.0 0.0015 0.0943 72 72 72 67 15 KODUKAI 0.09516 0.11042 -0.37945 1.00000 0.53783 0.4437 0.3737 0.0015 0.0 0.0473 67 67 67 67 14 TSUUWA 0.02004 0.29885 -0.44758 0.53783 1.00000 0.9435 0.2793 0.0943 0.0473 0.0 15 15 15 14 15 SAS システム 6 23:46 Wednesday, July 2, 2008 Model: MODEL1 Dependent Variable: TAIJYUU Analysis of Variance Sum of Mean Source DF Squares Square F Value Prob>F Model 2 1516.78406 758.39203 12.058 0.0001 Error 69 4339.62469 62.89311 C Total 71 5856.40875 Root MSE 7.93052 R-square 0.2590 Dep Mean 64.87083 Adj R-sq 0.2375 C.V. 12.22509 SAS システム 7 23:46 Wednesday, July 2, 2008 Parameter Estimates Parameter Standard T for H0: Variable DF Estimate Error Parameter=0 Prob > |T| INTERCEP 1 -52.393785 27.87199330 -1.880 0.0644 SHINTYOU 1 0.522023 0.16173964 3.228 0.0019 KYOUI 1 0.309227 0.09867524 3.134 0.0025 SAS システム 10 23:46 Wednesday, July 2, 2008 プロット : TAIJYUU*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ... TAIJYUU | 100 + A | A A | A 75 + A A A A A A AA | B B A D A A A B C A A A D A A A | A A A A B A B A D B C A AAA A A A AA A 50 + A B A | | 25 + --+---------+---------+---------+---------+---------+---------+- 155 160 165 170 175 180 185 SHINTYOU SAS システム 11 23:46 Wednesday, July 2, 2008 プロット : TAIJYUU*KYOUI. 凡例: A = 1 OBS, B = 2 OBS, ... TAIJYUU | 100 + A | A A | A 75 + A AA BA A A | A ACABIBCBB A | A A BCAADBEF AA A 50 + A A AA | | 25 + ---+-----------+-----------+-----------+-----------+-- 40 60 80 100 120 KYOUI SAS システム 12 23:46 Wednesday, July 2, 2008 プロット : TAIJYUU*PRED1. 凡例: A = 1 OBS, B = 2 OBS, ... TAIJYUU | 100 + A | A A | A 75 + A A A AA A A A | A A ABBBAAAABBA AA BBAA A | B A A AA B BA CACCAAABAA A 50 + A A AA | | 25 + --+-----------+-----------+-----------+-----------+-----------+- 50 55 60 65 70 75 Predicted Value of TAIJYUU SAS システム 13 23:46 Wednesday, July 2, 2008 プロット : RESID1*PRED1. 凡例: A = 1 OBS, B = 2 OBS, ... | R 50 + e | s | A i 25 + A A d | A A u | BAAAA A A a 0 +--------A---------B--A--A-A---B-BAABBBC-AABBA-AB--BBA--------A--- l | A AA A A A AABAAAABAA C A | -25 + ---+-----------+-----------+-----------+-----------+-----------+-- 50 55 60 65 70 75 Predicted Value of TAIJYUU SAS システム 14 23:46 Wednesday, July 2, 2008 プロット : RESID1*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ... | R 50 + e | s | A i 25 + A A d | A A u | A A A B B A a 0 +----A-----------A-A-----A-C-D-A-F-A-A-B-BAC-A-A-BA--B---A---A---- l | A B A A A B A B A A A A A BAA A A | -25 + ---+---------+---------+---------+---------+---------+---------+-- 155 160 165 170 175 180 185 SHINTYOU SAS システム 15 23:46 Wednesday, July 2, 2008 プロット : RESID1*KYOUI. 凡例: A = 1 OBS, B = 2 OBS, ... | R 50 + e | s | A i 25 + A A d | A A u | A BC B a 0 +------------A---------A--A-AB-AE-CAGCBE--B--A---A-------- l | A ABB C DAFA A | -25 + ---+------------+------------+------------+------------+-- 40 60 80 100 120 KYOUI SAS システム 16 23:46 Wednesday, July 2, 2008 プロット : RESID1*TAIJYUU. 凡例: A = 1 OBS, B = 2 OBS, ... | R 50 + e | s | A i 25 + A A d | A A u | AAB A A AA a 0 +----------------AAA---EAED-GBAB-DB------A------------------------ l | A A A CAABAFAA B A | -25 + ---+---------+---------+---------+---------+---------+---------+-- 40 50 60 70 80 90 100 TAIJYUU SAS システム 17 23:46 Wednesday, July 2, 2008 Univariate Procedure Variable=RESID1 Residual Moments N 72 Sum Wgts 72 Mean 0 Sum 0 Std Dev 7.818022 Variance 61.12147 Skewness 1.867145 Kurtosis 4.767846 USS 4339.625 CSS 4339.625 CV . Std Mean 0.921363 T:Mean=0 0 Pr>|T| 1.0000 Num ^= 0 72 Num > 0 28 M(Sign) -8 Pr>=|M| 0.0764 Sgn Rank -262 Pr>=|S| 0.1426 W:Normal 0.850792 Pr<W 0.0001 SAS システム 20 23:46 Wednesday, July 2, 2008 Univariate Procedure Variable=RESID1 Residual Stem Leaf # Boxplot 3 2 1 * 2 5 1 0 2 3 1 0 1 6 1 0 1 03 2 | 0 556799 6 | 0 1111222222333344 16 +--+--+ -0 444444433333222221111110 24 *-----* -0 98777776666555555 17 +-----+ -1 210 3 | ----+----+----+----+---- Multiply Stem.Leaf by 10**+1 SAS システム 21 23:46 Wednesday, July 2, 2008 Univariate Procedure Variable=RESID1 Residual Normal Probability Plot 32.5+ * | | * * 17.5+ * ++++++ | ++*++++ | +++***** 2.5+ +++******** | *********** | * *********+ -12.5+ * *+++++++ +----+----+----+----+----+----+----+----+----+----+ -2 -1 0 +1 +2
where sex='M' and taijyuu<80;
/* Lesson 13-4 */ /* File Name = les1304.sas 07/03/08 */ data air; infile 'usair2.prn'; input id $ y x1 x2 x3 x4 x5 x6; /* label y='SO2 of air in micrograms per cubic metre' x1='Average annual temperature in F' x2='Number of manufacturing enterprises employing 20 or more workers' x3='Population size (1970 census); in thousands' x4='Average annual wind speed in miles per hour' x5='Average annual precipitation in inches' x6='Average number of days with precipitation per year' ; */ proc print data=air(obs=10); run; proc corr data=air; run; proc reg data=air; : model y=x1 x2 x3 x4 x5 x6; : フルモデル output out=outreg1 predicted=pred1 residual=resid1; : run; : proc plot data=outreg1; plot resid1*pred1 /vref=0; : plot resid1*x1 /vref=0; : ズラズラと列記 plot resid1*x2 /vref=0; : plot resid1*x3 /vref=0; : plot resid1*x4 /vref=0; : plot resid1*x5 /vref=0; : plot resid1*x6 /vref=0; : plot resid1*y /vref=0; : run; proc reg data=air; : model y=x1-x6 / selection=stepwise; : 逐次増減法 output out=outreg1 predicted=pred1 residual=resid1; : 連続変数の指定方法 run; : proc print data=outreg1(obs=15); run; proc plot data=outreg1; plot resid1*pred1 /vref=0; : plot resid1*(x1 x2 x3 x4 x5 x6) /vref=0; : 簡略形(上と比較せよ) plot resid1*(x1-x6) /vref=0; : 簡略形(これも同じ意味) plot resid1*y /vref=0; : run; proc reg data=air; : model y=x1-x6 / selection=rsquare; : 総当り法 run; :
SAS システム 1 23:46 Wednesday, July 2, 2008 OBS ID Y X1 X2 X3 X4 X5 X6 1 Phoenix 10 70.3 213 582 6.0 7.05 36 2 Little_R 13 61.0 91 132 8.2 48.52 100 3 San_Fran 12 56.7 453 716 8.7 20.66 67 4 Denver 17 51.9 454 515 9.0 12.95 86 5 Hartford 56 49.1 412 158 9.0 43.37 127 6 Wilmingt 36 54.0 80 80 9.0 40.25 114 7 Washingt 29 57.3 434 757 9.3 38.89 111 8 Jacksonv 14 68.4 136 529 8.8 54.47 116 9 Miami 10 75.5 207 335 9.0 59.80 128 10 Atlanta 24 61.5 368 497 9.1 48.34 115 SAS システム 2 23:46 Wednesday, July 2, 2008 Correlation Analysis 7 'VAR' Variables: Y X1 X2 X3 X4 X5 X6 Simple Statistics Variable N Mean Std Dev Sum Minimum Maximum Y 41 30.0488 23.4723 1232.0 8.0000 110.0 X1 41 55.7634 7.2277 2286.3 43.5000 75.5000 X2 41 463.1 563.5 18987.0 35.0000 3344.0 X3 41 608.6 579.1 24953.0 71.0000 3369.0 X4 41 9.4439 1.4286 387.2 6.0000 12.7000 X5 41 36.7690 11.7715 1507.5 7.0500 59.8000 X6 41 113.9 26.5064 4670.0 36.0000 166.0 SAS システム 3 23:46 Wednesday, July 2, 2008 Correlation Analysis Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 41 Y X1 X2 X3 X4 X5 X6 Y 1.00000 -0.43360 0.64477 0.49378 0.09469 0.05429 0.36956 0.0 0.0046 0.0001 0.0010 0.5559 0.7360 0.0174 X1 -0.43360 1.00000 -0.19004 -0.06268 -0.34974 0.38625 -0.43024 0.0046 0.0 0.2340 0.6970 0.0250 0.0126 0.0050 X2 0.64477 -0.19004 1.00000 0.95527 0.23795 -0.03242 0.13183 0.0001 0.2340 0.0 0.0001 0.1341 0.8405 0.4113 X3 0.49378 -0.06268 0.95527 1.00000 0.21264 -0.02612 0.04208 0.0010 0.6970 0.0001 0.0 0.1819 0.8712 0.7939 X4 0.09469 -0.34974 0.23795 0.21264 1.00000 -0.01299 0.16411 0.5559 0.0250 0.1341 0.1819 0.0 0.9357 0.3052 X5 0.05429 0.38625 -0.03242 -0.02612 -0.01299 1.00000 0.49610 0.7360 0.0126 0.8405 0.8712 0.9357 0.0 0.0010 X6 0.36956 -0.43024 0.13183 0.04208 0.16411 0.49610 1.00000 0.0174 0.0050 0.4113 0.7939 0.3052 0.0010 0.0 SAS システム 5 23:46 Wednesday, July 2, 2008 Model: MODEL1 Dependent Variable: Y Analysis of Variance Sum of Mean Source DF Squares Square F Value Prob>F Model 6 14754.63603 2459.10601 11.480 0.0001 Error 34 7283.26641 214.21372 C Total 40 22037.90244 Root MSE 14.63604 R-square 0.6695 Dep Mean 30.04878 Adj R-sq 0.6112 C.V. 48.70761 SAS システム 6 23:46 Wednesday, July 2, 2008 Parameter Estimates Parameter Standard T for H0: Variable DF Estimate Error Parameter=0 Prob > |T| INTERCEP 1 111.728481 47.31810073 2.361 0.0241 X1 1 -1.267941 0.62117952 -2.041 0.0491 X2 1 0.064918 0.01574825 4.122 0.0002 X3 1 -0.039277 0.01513274 -2.595 0.0138 X4 1 -3.181366 1.81501910 -1.753 0.0887 X5 1 0.512359 0.36275507 1.412 0.1669 X6 1 -0.052050 0.16201386 -0.321 0.7500 SAS システム 14 23:46 Wednesday, July 2, 2008 プロット : RESID1*Y. 凡例: A = 1 OBS, B = 2 OBS, ... | R 50 + A e | s | A i 25 + d | A A AA u | AA AA A A A A a 0 +------AB------AAABA-A---------A--------------------------A------- l | CAA C A | ABA A -25 + A ---+---------+---------+---------+---------+---------+---------+-- 0 20 40 60 80 100 120 Y SAS システム 15 23:46 Wednesday, July 2, 2008 Stepwise Procedure for Dependent Variable Y Step 1 Variable X2 Entered R-square = 0.41572671 C(p) = 23.10893175 DF Sum of Squares Mean Square F Prob>F Regression 1 9161.74469120 9161.74469120 27.75 0.0001 Error 39 12876.15774782 330.15789097 Total 40 22037.90243902 Parameter Standard Type II Variable Estimate Error Sum of Squares F Prob>F INTERCEP 17.61057438 3.69158676 7513.50474182 22.76 0.0001 X2 0.02685872 0.00509867 9161.74469120 27.75 0.0001 Bounds on condition number: 1, 1 ------------------------------------------------------------------------ Step 2 Variable X3 Entered R-square = 0.58632019 C(p) = 7.55859687 DF Sum of Squares Mean Square F Prob>F Regression 2 12921.26717485 6460.63358743 26.93 0.0001 Error 38 9116.63526417 239.91145432 Total 40 22037.90243902 Parameter Standard Type II Variable Estimate Error Sum of Squares F Prob>F INTERCEP 26.32508332 3.84043919 11272.71964000 46.99 0.0001 X2 0.08243410 0.01469656 7548.02378137 31.46 0.0001 X3 -0.05660660 0.01429968 3759.52248365 15.67 0.0003 Bounds on condition number: 11.43374, 45.73494 ------------------------------------------------------------------------ Step 3 Variable X6 Entered R-square = 0.61740155 C(p) = 6.36100514 DF Sum of Squares Mean Square F Prob>F Regression 3 13606.23518823 4535.41172941 19.90 0.0001 Error 37 8431.66725079 227.88289867 Total 40 22037.90243902 Parameter Standard Type II Variable Estimate Error Sum of Squares F Prob>F INTERCEP 6.96584888 11.77690656 79.72552238 0.35 0.5578 X2 0.07433399 0.01506613 5547.32153619 24.34 0.0001 X3 -0.04939437 0.01454421 2628.36952166 11.53 0.0016 X6 0.16435940 0.09480151 684.96801338 3.01 0.0913 Bounds on condition number: 12.65025, 78.63322 ------------------------------------------------------------------------ All variables left in the model are significant at the 0.1500 level. No other variable met the 0.1500 significance level for entry into the model. SAS システム 20 23:46 Wednesday, July 2, 2008 Summary of Stepwise Procedure for Dependent Variable Y Variable Number Partial Model Step Entered Removed In R**2 R**2 C(p) F Prob>F 1 X2 1 0.4157 0.4157 23.1089 27.7496 0.0001 2 X3 2 0.1706 0.5863 7.5586 15.6705 0.0003 3 X6 3 0.0311 0.6174 6.3610 3.0058 0.0913 SAS システム 21 23:46 Wednesday, July 2, 2008 OBS ID Y X1 X2 X3 X4 X5 X6 PRED1 RESID1 1 Phoenix 10 70.3 213 582 6.0 7.05 36 -0.032 10.0316 2 Little_R 13 61.0 91 132 8.2 48.52 100 23.646 -10.6461 3 San_Fran 12 56.7 453 716 8.7 20.66 67 16.285 -4.2849 4 Denver 17 51.9 454 515 9.0 12.95 86 29.410 -12.4103 5 Hartford 56 49.1 412 158 9.0 43.37 127 50.661 5.3392 6 Wilmingt 36 54.0 80 80 9.0 40.25 114 27.698 8.3020 7 Washingt 29 57.3 434 757 9.3 38.89 111 20.079 8.9208 8 Jacksonv 14 68.4 136 529 8.8 54.47 116 10.011 3.9887 9 Miami 10 75.5 207 335 9.0 59.80 128 26.844 -16.8439 10 Atlanta 24 61.5 368 497 9.1 48.34 115 28.673 -4.6731 11 Chicago 110 50.6 3344 3369 10.4 34.44 122 109.181 0.8191 12 Indianap 28 52.3 361 746 9.7 38.74 121 16.840 11.1603 13 Des_Moin 17 49.0 104 201 11.2 30.85 103 21.697 -4.6973 14 Wichita 8 56.6 125 277 12.7 30.58 82 16.053 -8.0528 15 Louisvil 30 55.6 291 593 8.3 43.11 123 19.522 10.4776 SAS システム 35 23:46 Wednesday, July 2, 2008 プロット : RESID1*Y. 凡例: A = 1 OBS, B = 2 OBS, ... 50 + A R | e | A s | AA i | A ABA A A A d 0 +--------BA-A--ABA-A-A---------A--------------------------A------- u | AC C B A A a | B A A A l | A | -50 + ---+---------+---------+---------+---------+---------+---------+-- 0 20 40 60 80 100 120 Y SAS システム 36 23:46 Wednesday, July 2, 2008 N = 41 Regression Models for Dependent Variable: Y Number in R-square Variables in Model Model 1 0.41572671 X2 1 0.24381828 X3 1 0.18800913 X1 1 0.13657727 X6 1 0.00896628 X4 1 0.00294788 X5 -------------------------- 2 0.58632019 X2 X3 2 0.51611499 X1 X2 2 0.49813569 X2 X6 2 0.42138706 X2 X5 ≪略≫ 2 0.01204980 X4 X5 ----------------------------- 3 0.61740155 X2 X3 X6 3 0.61254683 X1 X2 X3 3 0.59304760 X2 X3 X5 3 0.59298732 X2 X3 X4 ≪略≫ 3 0.15899893 X4 X5 X6 -------------------------------- 4 0.63964257 X1 X2 X3 X5 4 0.63287070 X1 X2 X3 X4 4 0.62909408 X1 X2 X3 X6 4 0.62847667 X2 X3 X4 X6 ≪略≫ 4 0.25499437 X1 X4 X5 X6 ----------------------------------- 5 0.66850854 X1 X2 X3 X4 X5 5 0.65012088 X1 X2 X3 X4 X6 5 0.63964824 X1 X2 X3 X5 X6 5 0.62901313 X2 X3 X4 X5 X6 5 0.60403117 X1 X2 X4 X5 X6 5 0.50433666 X1 X3 X4 X5 X6 -------------------------------------- 6 0.66951181 X1 X2 X3 X4 X5 X6 -----------------------------------------