/* Lesson 10-1 */
/* File Name = les1001.sas 06/12/08 */
data gakusei;
infile 'all08ae.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
if sex^='M' & sex^='F' then delete; : 性別不明は除外する
proc print data=gakusei(obs=5);
run;
proc sort data=gakusei;
by sex;
run;
proc univariate data=gakusei plot;
var shintyou taijyuu kyoui kodukai;
by sex;
run;
SAS システム 8
12:08 Wednesday, June 11, 2008
-------------------------------- SEX=F ---------------------------------
Univariate Procedure
Variable=SHINTYOU
Normal Probability Plot
172.5+ +*++*
| *****+*+***
| **********++
| **********+
| +********+
147.5+*++*+*+**
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
SAS システム 15
12:08 Wednesday, June 11, 2008
-------------------------------- SEX=F ---------------------------------
Univariate Procedure
Variable=TAIJYUU
Normal Probability Plot
62.5+ * +*
| *****+*++++
| ************
| ************+
| *+****+**++
37.5+*+++*++
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
SAS システム 22
12:08 Wednesday, June 11, 2008
-------------------------------- SEX=F ---------------------------------
Univariate Procedure
Variable=KYOUI
Normal Probability Plot
92.5+ +++*+++
| ***********+**+++*
82.5+ ********+***+*++++
| ++*+*+**+++++
72.5++++*+
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
SAS システム 29
12:08 Wednesday, June 11, 2008
-------------------------------- SEX=F ---------------------------------
Univariate Procedure
Variable=KODUKAI
Normal Probability Plot
325000+ *
|
| *
175000+ *** ++
| *****+++++++
| +**********
25000+* * **********************
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
SAS システム 36
12:08 Wednesday, June 11, 2008
-------------------------------- SEX=M ---------------------------------
Univariate Procedure
Variable=SHINTYOU
Normal Probability Plot
187.5+ **+*
| ********+++
| ********++
172.5+ ************
| *********+
| *********+
157.5+*++
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
SAS システム 43
12:08 Wednesday, June 11, 2008
-------------------------------- SEX=M ---------------------------------
Univariate Procedure
Variable=TAIJYUU
Normal Probability Plot
105+ *
| * *
| ***+++
75+ **********+++
| ***************
| *****************+
45+*++*++++++
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
SAS システム 50
12:08 Wednesday, June 11, 2008
-------------------------------- SEX=M ---------------------------------
Univariate Procedure
Variable=KYOUI
Normal Probability Plot
115+ * +*+
| +***+*++++
| ***********+**
| *************+++
| *+***+++++
|+++++++
| *
45+ *
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
SAS システム 57
12:08 Wednesday, June 11, 2008
-------------------------------- SEX=M ---------------------------------
Univariate Procedure
Variable=KODUKAI
Normal Probability Plot
375000+ *
| *
|
| *
| *****+**+++
| ******+++++
| ++*******+
25000+* ***************************
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
/* Lesson 10-2 */
/* File Name = les1002.sas 06/12/08 */
data gakusei;
infile 'all08ae.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
if sex^='M' & sex^='F' then delete;
proc print data=gakusei(obs=10);
run;
proc ttest data=gakusei; : t検定
class sex; : 分類したい特性変数の指定
var shintyou taijyuu kyoui kodukai; : 比較したい変量名
run; :
SAS システム 2
12:08 Wednesday, June 11, 2008
TTEST PROCEDURE
Variable: SHINTYOU
SEX N Mean Std Dev Std Error
-----------------------------------------------------------------------
F 127 158.98188976 5.25173316 0.46601596
M 252 172.22380952 5.44545468 0.34303140
Variances T DF Prob>|T|
---------------------------------------
Unequal -22.8840 261.1 0.0001
Equal -22.6116 377.0 0.0000
For H0: Variances are equal, F' = 1.08 DF = (251,126)
Prob>F' = 0.6530
SAS システム 3
12:08 Wednesday, June 11, 2008
TTEST PROCEDURE
Variable: TAIJYUU
SEX N Mean Std Dev Std Error
-----------------------------------------------------------------------
F 88 48.84090909 4.74820320 0.50616016
M 252 62.21349206 7.90706329 0.49809817
Variances T DF Prob>|T|
---------------------------------------
Unequal -18.8309 254.4 0.0001
Equal -14.9434 338.0 0.0000
For H0: Variances are equal, F' = 2.77 DF = (251,87)
Prob>F' = 0.0000
SAS システム 4
12:08 Wednesday, June 11, 2008
TTEST PROCEDURE
Variable: KYOUI
SEX N Mean Std Dev Std Error
-----------------------------------------------------------------------
F 45 82.97777778 3.85232450 0.57427063
M 72 87.98611111 9.66406594 1.13892109
Variances T DF Prob>|T|
---------------------------------------
Unequal -3.9265 101.1 0.0002
Equal -3.3116 115.0 0.0012
For H0: Variances are equal, F' = 6.29 DF = (71,44)
Prob>F' = 0.0000
SAS システム 5
12:08 Wednesday, June 11, 2008
TTEST PROCEDURE
Variable: KODUKAI
SEX N Mean Std Dev Std Error
-----------------------------------------------------------------------
F 123 48089.43089431 44134.99376077 3979.51837003
M 241 47692.94605809 51860.03912810 3340.59878498
Variances T DF Prob>|T|
---------------------------------------
Unequal 0.0763 283.1 0.9392
Equal 0.0724 362.0 0.9423
For H0: Variances are equal, F' = 1.38 DF = (240,122)
Prob>F' = 0.0463
/* Lesson 10-3 */
/* File Name = les1003.sas 06/12/08 */
data gakusei;
infile 'all08ae.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
if sex^='M' & sex^='F' then delete;
proc print data=gakusei(obs=10);
run;
proc npar1way data=gakusei wilcoxon; : wilcoxon 検定
class sex; : 分類したい特性変数の指定
var shintyou taijyuu kyoui kodukai; : 比較したい変量名
run; :
SAS システム 2
12:08 Wednesday, June 11, 2008
N P A R 1 W A Y P R O C E D U R E
Wilcoxon Scores (Rank Sums) for Variable SHINTYOU
Classified by Variable SEX
Sum of Expected Std Dev Mean
SEX N Scores Under H0 Under H0 Score
F 127 9309.5000 24130.0 1006.03685 73.303150
M 252 62700.5000 47880.0 1006.03685 248.811508
Average Scores Were Used for Ties
Wilcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)
SAS システム 3
12:08 Wednesday, June 11, 2008
N P A R 1 W A Y P R O C E D U R E
S = 9309.50 Z = -14.7311 Prob > |Z| = 0.0001
T-Test Approx. Significance = 0.0001
Kruskal-Wallis Test (Chi-Square Approximation)
CHISQ = 217.02 DF = 1 Prob > CHISQ = 0.0001
SAS システム 4
12:08 Wednesday, June 11, 2008
N P A R 1 W A Y P R O C E D U R E
Wilcoxon Scores (Rank Sums) for Variable TAIJYUU
Classified by Variable SEX
Sum of Expected Std Dev Mean
SEX N Scores Under H0 Under H0 Score
F 88 5008.5000 15004.0 793.040519 56.914773
M 252 52961.5000 42966.0 793.040519 210.164683
Average Scores Were Used for Ties
Wilcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)
SAS システム 5
12:08 Wednesday, June 11, 2008
N P A R 1 W A Y P R O C E D U R E
S = 5008.50 Z = -12.6034 Prob > |Z| = 0.0001
T-Test Approx. Significance = 0.0001
Kruskal-Wallis Test (Chi-Square Approximation)
CHISQ = 158.86 DF = 1 Prob > CHISQ = 0.0001
SAS システム 6
12:08 Wednesday, June 11, 2008
N P A R 1 W A Y P R O C E D U R E
Wilcoxon Scores (Rank Sums) for Variable KYOUI
Classified by Variable SEX
Sum of Expected Std Dev Mean
SEX N Scores Under H0 Under H0 Score
F 45 1803.0 2655.0 177.518371 40.0666667
M 72 5100.0 4248.0 177.518371 70.8333333
Average Scores Were Used for Ties
Wilcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)
SAS システム 7
12:08 Wednesday, June 11, 2008
N P A R 1 W A Y P R O C E D U R E
S = 1803.00 Z = -4.79669 Prob > |Z| = 0.0001
T-Test Approx. Significance = 0.0001
Kruskal-Wallis Test (Chi-Square Approximation)
CHISQ = 23.035 DF = 1 Prob > CHISQ = 0.0001
SAS システム 8
12:08 Wednesday, June 11, 2008
N P A R 1 W A Y P R O C E D U R E
Wilcoxon Scores (Rank Sums) for Variable KODUKAI
Classified by Variable SEX
Sum of Expected Std Dev Mean
SEX N Scores Under H0 Under H0 Score
F 123 23691.5000 22447.5000 944.942897 192.613821
M 241 42738.5000 43982.5000 944.942897 177.338174
Average Scores Were Used for Ties
Wilcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)
SAS システム 9
12:08 Wednesday, June 11, 2008
N P A R 1 W A Y P R O C E D U R E
S = 23691.5 Z = 1.31595 Prob > |Z| = 0.1882
T-Test Approx. Significance = 0.1890
Kruskal-Wallis Test (Chi-Square Approximation)
CHISQ = 1.7331 DF = 1 Prob > CHISQ = 0.1880