$BJ?6QCM$N?dDj$H8!Dj!"%0%k!<%WJ,$1(B

$BE}7W2r@O(B 02 $B%/%i%9(B : $BBh(B09$B2s(B (06/05/08)

$B!!:#2s$O!"J?6QCM$N?dDj$H8!Dj$K$D$$$F!"$=$N9M$(J}$r>R2p$7$?8e!"(B SAS $B$GBN83$7$F$b$i$&!#(B $B$=$N8e$K!"Mb=5$K$D$J$2$k$Y$/!"%0%k!<%WKh$N=87WJ}K!$K$D$$$F@bL@$9$k!#(B
  1. $B%l%]!<%H$rGR8+$7$F(B & $B@hGZ$NNc$+$i(B: $BDs=P$BO"Mm%Z!<%8(B $B$K7G:\(B
    i. SAS, $BA`:n4XO"(B
    • $B%W%m%0%i%`$O<+:n$G$-$k$h$&$K$J$C$?$+(B? Log $B$NFI$_J}!#%(%i!<$N=$@5J}K!(B(Debug)$B!#7P83$r=E$M$k!#(B
    • $BE}7W $BEE;R2=$d%G!<%?$NAwAw%b!<%I$d4A;z%3!<%I(B)$B$O=,F@$G$-$?$+(B?
    • $Be:No$J%W%m%0%i%`$r=q$3$&(B : $BCJ2<$2!"%3%a%s%H!"8eF|$N$?$a$N3P$((B

    • $B2hLL%5%$%:$rJQ99$7$F$$$k?M$O!"=PNO$N2#I}$KCm0U!#(B PuTTY $B$N%G%U%)%k%H$N%5%$%:$G)$a$k!#(B(80$B%+%i%`L$K~(B)$B!#(B
      $B$b$7$/$O!"0J2<$N9T$r%W%m%0%i%`$N%3%a%s%H$ND>8e$KF~$l$k!#(B
      options linesize=72;
      
    ii. $B%l%]!<%H:n@.4XO"(B
    • $B%l%]!<%H$X$N5-:\;v9`(B : $B;aL>!"3X@RHV9f!"%a!<%k$N(B Subject ...
    • $B>ON)$F(B : $B2r@O$NL\E*(B($B6=L#$r;}$C$?E@(B)$B!"BP>]%G!<%?!"J,@OJ}K!!"J,@O7k2L!"9M;!(B($BCN8+!"46F0!"(B...)
    • $B%G!<%?$N@bL@(B : $B=PE8(B($BK\(B, URL $BEy(B)$B!#8D!9$NJQNL$O2?$rB,Dj$7$?$b$N$J$N$+!#%5%$%:!"JQNL$N@bL@!"@:EY!#3X@8%G!<%?$KBP$7$F$b!#(B
    • SAS $B$N=PNO$NM-8zMxMQ(B : $B0zMQNL!#I,MWItJ,$rE,59!#@bL@$r2C$($k!#(B $B%@%i%@%i$H0zMQ$7$J$$!#(B
    • $BFI/$J$/$9$k$h$&$KG[CV$9$k!#3F<+$GFI$_JV$7$F$_$k!#(B
    iii. $BEE;R%a!<%k4XO"(B
    • $B5! cm, km, kg, (1)
    • $B?^I=$N$:$l(B : $B0l9TJ8;z?t(B(80$B%+%i%`0J2<(B)$B!#%a!<%k%=%U%H$N@_Dj$b1F6A!#(B $B8GDj%T%C%AJ8;z!#3F<+$G3NG'$G$-$k!#(B
    • $BJ8;z2=$1(B : $B3F<+$G3NG'$G$-$k!#(B
    • $B%a!<%k$K$O(B Subject $B$rIU$1$h!#(BMIME $B7A<0(B(HTML $B7A<0(B)$B$OHr$1$h!#(B

    iv. $BE}7W4XO"(B

    • $BM-8z7e?t(B : $B;;=P$5$l$??tCM$K$O@:EY$,$"$k!#0UL#$N$"$k7e?t$r0U<1$9$k$3$H!#(B
    • $BE}7W(B($B4pACE}7WNL(B)$B$r7W;;$9$k0UL#(B : $B0lL\$GGD0.$G$-$J$$$+$i(B
    • $BJ,I[7A>u$rGD0.$9$kJ}K!$rBNF@$G$-$?$+(B?
    • $BJ,I[$,@55,J,I[$r$7$F$$$k$+$I$&$+$H$$$&$3$H(B : $B:#$^$G$NCJ3,$G$O=EMW;k$7$J$$(B
    • $B!V%5%s%W%k%5%$%:$,(B1$B!W$NJQNL$NJ?6QCMEy$N0UL#$C$F2?(B?
    v. $B$=$NB>!":#8e$X$NH/E8(B
    • $B:#2s$NH?>J$rF'$^$($F!" $B%G!<%?$N8+D>$7$b(B : $B%G!<%?FbMF$N6cL#!#$h$j6=L#$N$"$k%G!<%?!#%5%s%W%k%5%$%:$dJQNL?t$OBg$-$/$F$bLdBj$O$J$$!#>/?tNc$O$"$^$j9%$^$7$/$J$$!#(B...
    • $B5?Ld$K;W$C$?$3$H$O2?$G$b<+J,$G;n$7$F$_$k!#%@%a$J$iJ9$$$F$_$k!#(B

    • $BG[I[;qNA$N;H$$J}(B : $B%a%b$N $BI|=,$N=EMW@-(B : "$BBNF@(B"$B!#1i=,!#9V5A;~4V$@$1$G$J$/3F<+$G$b!#(B
    • $BE::o4uK> $B!#5?Ld$OAa$a$K2r7h$7$h$&!#(B
    • $B>r7o$rK~$?$7$F$$$J$$%l%]!<%H$ODs=P$5$l$?$H$OG'$a$^$;$s!#(B $BC10L$bG'Dj$G$-$^$;$s!#(B

  2. $BJ?6QCM$N?dDj(B : 4.2 $B@a(B (P58)

  3. $BJ?6QCM$N8!Dj(B : 5.2 $B@a(B (P72)

    1. $B%W%m%0%i%`(B : les0901.sas
       /* Lesson 9-01 */
       /*    File Name = les0901.sas   06/05/08   */
      
      data gakusei;
        infile 'all08ae.prn'
          firstobs=2;
        input sex $ shintyou taijyuu kyoui 
              jitaku $ kodukai carryer $ tsuuwa;
      
      diff180 =shintyou-180.0;                     : 180.0 $B$H$N:9$r?7$7$$JQNL$H$7$F(B
      diff170 =shintyou-170.0;                     : 170.0 $B$H$N:9$r(B
      diff169 =shintyou-169.0;                     : 169.0 $B$H$N:9$r(B
      diff168 =shintyou-168.0;                     : 168.0 $B$H$N:9$r(B
      diff1678=shintyou-167.8;                     : 167.8 $B$H$N:9$r(B
      
      proc print data=gakusei(obs=5);
      run;
      
      proc univariate data=gakusei plot;
        var shintyou diff180 diff170 diff169 diff168 diff1678;
      run;
      
    2. $B=PNO7k2L(B : les0901.lst
                                    SAS $B%7%9%F%`(B                             1
                                                  10:09 Thursday, June 5, 2008
               S                                                         D
               H    T        K      C            D     D     D     D     I
               I    A    J   O      A       T    I     I     I     I     F
               N    I  K I   D      R       S    F     F     F     F     F
               T    J  Y T   U      R       U    F     F     F     F     1
        O  S   Y    Y  O A   K      Y       U    1     1     1     1     6
        B  E   O    U  U K   A      E       W    8     7     6     6     7
        S  X   U    U  I U   I      R       A    0     0     9     8     8
      
         1 F 145.0 38  . J 10000             . -35.0 -25.0 -24.0 -23.0 -22.8
         2 F 146.7 41 85 J 10000 Vodafone 6000 -33.3 -23.3 -22.3 -21.3 -21.1
         3 F 148.0 42  . J 50000             . -32.0 -22.0 -21.0 -20.0 -19.8
         4 F 148.0 43 80 J 50000 DoCoMo   4000 -32.0 -22.0 -21.0 -20.0 -19.8
         5 F 148.9  .  . J 60000             . -31.1 -21.1 -20.1 -19.1 -18.9
      
                                    SAS $B%7%9%F%`(B                             2
                                                  10:09 Thursday, June 5, 2008
                                Univariate Procedure
      Variable=SHINTYOU
                                      Moments
      
                      N               380  Sum Wgts        380
                      Mean       167.7871  Sum         63759.1
                      Std Dev    8.238706  Variance   67.87627
                      Skewness   -0.28928  Kurtosis   -0.43429
                      USS        10723680  CSS        25725.11
                      CV         4.910214  Std Mean   0.422637
                      T:Mean=0   397.0008  Pr>|T|       0.0001
                      Num ^= 0        380  Num > 0         380
                      M(Sign)         190  Pr>=|M|      0.0001
                      Sgn Rank      36195  Pr>=|S|      0.0001
      
                                    SAS $B%7%9%F%`(B                             6
                                                  10:09 Thursday, June 5, 2008
                                Univariate Procedure
      Variable=SHINTYOU
                           Histogram                   #             Boxplot
         187.5+**                                      4                |   
              .********                               22                |   
              .*******************                    55                |   
              .***********************************   104             +-----+
         167.5+************************               71             *--+--*
              .********************                   58             +-----+
              .**************                         42                |   
              .******                                 18                |   
         147.5+**                                      6                0   
               ----+----+----+----+----+----+----+              
               * may represent up to 3 counts                   
      
                                    SAS $B%7%9%F%`(B                             7
                                                  10:09 Thursday, June 5, 2008
                                Univariate Procedure
      Variable=SHINTYOU
                                   Normal Probability Plot              
               187.5+                                              ++*+*
                    |                                        ********   
                    |                                 ********          
                    |                         *********                 
               167.5+                     *****++                       
                    |                *****+                             
                    |          *******                                  
                    |    *******                                        
               147.5+*+**                                               
                     +----+----+----+----+----+----+----+----+----+----+
                         -2        -1         0        +1        +2     
      
                                    SAS $B%7%9%F%`(B                             8
                                                  10:09 Thursday, June 5, 2008
                                Univariate Procedure
      Variable=DIFF180
                                      Moments
      
                      N               380  Sum Wgts        380
                      Mean       -12.2129  Sum         -4640.9
                      Std Dev    8.238706  Variance   67.87627
                      Skewness   -0.28928  Kurtosis   -0.43429
                      USS        82403.93  CSS        25725.11
                      CV         -67.4591  Std Mean   0.422637
                      T:Mean=0   -28.8969  Pr>|T|       0.0001
                      Num ^= 0        370  Num > 0          16
                      M(Sign)        -169  Pr>=|M|      0.0001
                      Sgn Rank     -33768  Pr>=|S|      0.0001
      
                                    SAS $B%7%9%F%`(B                            14
                                                  10:09 Thursday, June 5, 2008
                                Univariate Procedure
      Variable=DIFF170
                                      Moments
      
                      N               380  Sum Wgts        380
                      Mean       -2.21289  Sum          -840.9
                      Std Dev    8.238706  Variance   67.87627
                      Skewness   -0.28928  Kurtosis   -0.43429
                      USS        27585.93  CSS        25725.11
                      CV         -372.304  Std Mean   0.422637
                      T:Mean=0   -5.23593  Pr>|T|       0.0001
                      Num ^= 0        354  Num > 0         159
                      M(Sign)         -18  Pr>=|M|      0.0627
                      Sgn Rank      -8620  Pr>=|S|      0.0001
      
                                    SAS $B%7%9%F%`(B                            20
                                                  10:09 Thursday, June 5, 2008
                                Univariate Procedure
      Variable=DIFF169
                                      Moments
      
                      N               380  Sum Wgts        380
                      Mean       -1.21289  Sum          -460.9
                      Std Dev    8.238706  Variance   67.87627
                      Skewness   -0.28928  Kurtosis   -0.43429
                      USS        26284.13  CSS        25725.11
                      CV          -679.26  Std Mean   0.422637
                      T:Mean=0   -2.86983  Pr>|T|       0.0043
                      Num ^= 0        373  Num > 0         187
                      M(Sign)         0.5  Pr>=|M|      1.0000
                      Sgn Rank    -4421.5  Pr>=|S|      0.0336
      
                                    SAS $B%7%9%F%`(B                            26
                                                  10:09 Thursday, June 5, 2008
                                Univariate Procedure
      Variable=DIFF168
                                      Moments
      
                      N               380  Sum Wgts        380
                      Mean       -0.21289  Sum           -80.9
                      Std Dev    8.238706  Variance   67.87627
                      Skewness   -0.28928  Kurtosis   -0.43429
                      USS        25742.33  CSS        25725.11
                      CV         -3869.85  Std Mean   0.422637
                      T:Mean=0   -0.50373  Pr>|T|       0.6147
                      Num ^= 0        363  Num > 0         198
                      M(Sign)        16.5  Pr>=|M|      0.0929
                      Sgn Rank      -66.5  Pr>=|S|      0.9735
      
                                    SAS $B%7%9%F%`(B                            32
                                                  10:09 Thursday, June 5, 2008
                                Univariate Procedure
      Variable=DIFF1678
                                      Moments
      
                      N               380  Sum Wgts        380
                      Mean       -0.01289  Sum            -4.9
                      Std Dev    8.238706  Variance   67.87627
                      Skewness   -0.28928  Kurtosis   -0.43429
                      USS        25725.17  CSS        25725.11
                      CV           -63892  Std Mean   0.422637
                      T:Mean=0   -0.03051  Pr>|T|       0.9757
                      Num ^= 0        380  Num > 0         215
                      M(Sign)          25  Pr>=|M|      0.0118
                      Sgn Rank       1240  Pr>=|S|      0.5634
      
    3. $B7k2L$N8+J}(B :
      • $BJ,I[$,@55,J,I[$r$7$F$$$k$+$r3NG'$9$k$K$O(B :
        • Normal Probability Plot : $B@55,3NN(%W%m%C%H(B : $BBh(B5$B2s(B
          $BJ,I[$,@55,J,I[$+$I$&$+$r3N$+$a$k(B
          + $B$,4p=`@~!"(B* $B$,BP>]%G!<%?!#$:$l$F$$$k$H@55,@-$,5?$o$l$k!#(B

      • $B:9$,%<%m$H8@$($k$+$N8!Dj(B $B!a(B $B;XDj$7$?CM$H8@$($k$+(B
        • T:Mean=0 : $BJ?6Q(B=0 ($B5"L52>@b(B)$B$N8!Dj$N$?$a$N(B t $BE}7WNL(B
        • Pr>=|T| : t $BE}7WNL$NN>B&M-0U3NN((B
          • t $BE}7WNL$rE,MQ$9$k>l9g$O!":9$NJ,I[$,@55,J,I[$K=>$C$F$$$k$3$H$r2>Dj$7$F$$$k(B
          • $B:9$NJ,I[$,@55,J,I[$r$7$F$$$k$+$r3NG'$9$k$K$O(B : Normal Probability Plot

        • M(Sign) : $BJl=8CD$NCf1{CM(B($B%a%G%#%"%s(B)$B$,%<%m$G$"$k$H$$$&2>@b$r8!Dj$9$k$?$a$NId9gIU$-=g0LOB8!DjE}7WNL(B
        • Pr>=|M| : $BJl=8CD$NCf1{CM(B($B%a%G%#%"%s(B)$B$,%<%m$G$"$k$H$$$&2>@b$N2<$G!"$=$NId9gE}7WNL$h$j$bBg$-$$@dBPCM$,F@$i$l$k3NN((B
        • Sgn Rank : $BJ?6Q(B=0 ($B5"L52>@b(B)$B$N8!Dj$N$?$a$NId9gIU$-=g0LOB8!DjE}7WNL(B
        • Pr>=|S| : $BId9gIU$-=g0LOB8!DjE}7WNL$N$?$a$N6a;wE*M-0U3NN((B

    4. $B2r
    5. $B?HD9$NJ,I[$O@55,J,I[$HH=CG$7$FNI$$$+(B?
      • $B4p=`@~$K$I$NDxEY>h$C$F$$$k$+$GH=CG$9$k(B
      • $B@55,J,I[$H8@$C$F$bNI$5$=$&(B
      • [$B1i=,(B1] $B?HD90J30$KBN=E$d6;0O!">.8/$$3[$O$I$&$+(B?

    6. $B?HD9$NJ?6QCM$,(B180.0cm $B$H8@$($k3NN($O(B 0.01% $B!a(B $B8@$($J$$(B
    7. $B$G$O!"(B170.0cm $B$H8@$($k3NN($O(B? 169.0cm, 168.0cm, 167.8cm, ...

    8. $BH=CG4p=`(B($B8!Dj4p=`(B)
      • $B$I$l$/$i$$$N3d9g(B($B3NN((B)$B$G$=$N2>@b$,H/@8$9$k$+(B?
      • $B3NN($,>.$5$$(B ==> $B5)$J$3$H(B($BIaDL$G$O$J$$(B) ==> $B:9$,$"$k(B($B!VM-0U!W$H8@$&(B)
      • 5% $BM-0U!"(B1% $BM-0U(B : $B:#$^$G$N47=,$+$i(B

    9. $B2>Dj(B($B5"L52>@b(B)$B$KBP$7$F(B
      • $B!V%<%m$H8@$($k(B($B:9$O$J$$(B)$B!W$H2>Dj$7$?;~(B : $B!VM-0U!W$K:9$,$"$k(B/$B$J$$$rH=Dj(B

  4. $B%0%k!<%WJ,$1(B : $BD4::BP>]$N@-

  5. [$B$*$^$1(B] $BC1JQNL!"FsJQNL$r;k3PE*$KB*$($k$H(B? by Mathematica
    1. 1 dim. Normal Distribution [$B<0(B(a)] 1$B 2 dim. Normal Distribution [$B<0(B(b)] 2$B 2 dim. Normal Distribution [$B<0(B(c)] 2$B 2 dim. Normal Distribution [$B<0(B(d)] 2$B 2 dim. Normal Distribution [$B<0(B(e)] 2$B
[DIR]$B9V5A$N%[!<%`%Z!<%8(B$B$XLa$j$^$9(B