$BJ?6QCM$NHf3S!"8!Dj(B

$BE}7W2r@O(B 06 $B%/%i%9(B : $BBh(B09$B2s(B (11/28/07)

$B!!:#2s$O!"C1JQNL$N=87W$H$7$F$h$/MxMQ$5$l$kJ?6QCM$N8!DjJ}K!$K$D$$$F>R2p$9$k!#(B $B2>Dj>r7o$dH=CG4p=`Ey!"0l8+J#;($K8+$($kO@M}E83+$J$N$G!"(B $B:.Mp$7$J$$$h$&$KM}2r$7$F$[$7$$!#(B
  1. $B%l%]!<%H$rGR8+$7$F(B & $B@hGZ$NNc$+$i(B: $BDs=P$BO"Mm%Z!<%8(B $B$K7G:\(B
    i. SAS, $BA`:n4XO"(B
    • $B%W%m%0%i%`$O<+:n$G$-$k$h$&$K$J$C$?$+(B? Log $B$NFI$_J}!#%(%i!<$N=$@5J}K!(B(Debug)$B!#7P83$r=E$M$k!#(B
    • $BE}7W $BEE;R2=$d%G!<%?$NAwAw%b!<%I$d4A;z%3!<%I(B)$B$O=,F@$G$-$?$+(B?
    • $Be:No$J%W%m%0%i%`$r=q$3$&(B : $BCJ2<$2!"%3%a%s%H!"8eF|$N$?$a$N3P$((B
    ii. $B%l%]!<%H:n@.4XO"(B
    • $B%l%]!<%H$X$N5-:\;v9`(B : $B;aL>!"3X@RHV9f!"(B...
    • $B>ON)$F(B : $B2r@O$NL\E*(B($B6=L#$r;}$C$?E@(B)$B!"BP>]%G!<%?!"J,@OJ}K!!"J,@O7k2L!"9M;!(B($BCN8+!"46F0!"(B...)
    • $B%G!<%?$N@bL@(B : $B=PE8(B($BK\(B, URL $BEy(B)$B!#8D!9$NJQNL$O2?$rB,Dj$7$?$b$N$J$N$+!#%5%$%:!"JQNL$N@bL@!"@:EY!#3X@8%G!<%?$KBP$7$F$b!#(B
    • SAS $B$N=PNO$NM-8zMxMQ(B : $B0zMQNL!#I,MWItJ,$rE,59!#@bL@$r2C$($k!#(B $B%@%i%@%i$H0zMQ$7$J$$!#(B
    • $BFI/$J$/$9$k$h$&$KG[CV$9$k!#3F<+$GFI$_JV$7$F$_$k!#(B
    iii. $BEE;R%a!<%k4XO"(B
    • $B?^I=$N$:$l(B : $B0l9TJ8;z?t(B(80$B%+%i%`0J2<(B)$B!#%a!<%k%=%U%H$N@_Dj$b1F6A!#(B $B8GDj%T%C%AJ8;z!#3F<+$G3NG'$G$-$k!#(B
    • $BJ8;z2=$1(B : $B3F<+$G3NG'$G$-$k!#(B

    iv. $BE}7W4XO"(B

    • $BM-8z7e?t(B : $B;;=P$5$l$??tCM$K$O@:EY$,$"$k!#0UL#$N$"$k7e?t$r0U<1$9$k$3$H!#(B
    • $BE}7W(B($B4pACE}7WNL(B)$B$r7W;;$9$k0UL#(B : $B0lL\$GGD0.$G$-$J$$$+$i(B
    • $BJ,I[7A>u$rGD0.$9$kJ}K!$rBNF@$G$-$?$+(B?
    • $BJ,I[$,@55,J,I[$r$7$F$$$k$+$I$&$+$H$$$&$3$H(B : $B:#$^$G$NCJ3,$G$O=EMW;k$7$J$$(B
    • $B!V%5%s%W%k%5%$%:$,(B1$B!W$NJQNL$NJ?6QCMEy$N0UL#$C$F2?(B?
    v. $B$=$NB>!":#8e$X$NH/E8(B
    • $B:#2s$NH?>J$rF'$^$($F!" $B%G!<%?$N8+D>$7$b(B : $B%G!<%?FbMF$N6cL#!#$h$j6=L#$N$"$k%G!<%?!#%5%s%W%k%5%$%:$dJQNL?t$OBg$-$/$F$bLdBj$O$J$$!#>/?tNc$O$"$^$j9%$^$7$/$J$$!#(B...
    • $B5?Ld$K;W$C$?$3$H$O2?$G$b<+J,$G;n$7$F$_$k!#%@%a$J$iJ9$$$F$_$k!#(B

    • $BG[I[;qNA$N;H$$J}(B : $B%a%b$N $BI|=,$N=EMW@-(B : "$BBNF@(B"$B!#1i=,!#9V5A;~4V$@$1$G$J$/3F<+$G$b!#(B
    • $BE::o4uK> $B!#5?Ld$OAa$a$K2r7h$7$h$&!#

    • $BJ?6QCM$NHf3S(B : 2$B$D$N%0%k!<%W$N!VJ?6QCM!W$K(B$BE}7WE*$K(B$B:9$,$"$k$H8@$($k$N$+(B?
      • A$B%/%i%9(B $B$H(B B$B%/%i%9$G;n83$N@.@S$K:9$,$"$k$H8@$($k$N$+(B?
      • $BLt$rEjM?$9$k(B/$B$7$J$$$G@.J,(B($B7lE|CMEy(B)$B$K:9$,$"$k$H8@$($k$N$+(B?
      • $B?HD9(B($B$dBN=E$d6;0O$d>.8/$$3[(B)$B$O@-JL$K$h$C$F:9$,$"$k$H8@$($k$N$+(B?
      • $B>.8/$$3[$O<+Bp@8$H2<=I@8$G:9$,$"$k$H8@$($k$N$+(B?
      • ...

      • $B3FJ,I[$,(B $B@55,J,I[(B $B$K=>$C$F$$$k$+$I$&$+$K$h$C$FJ}K!$,0[$J$k(B
        • $B%Q%i%a%H%j%C%/8!Dj(B($B@55,@-$r2>Dj(B) : t$B8!Dj(B (Student $B$N(Bt$B8!Dj(B)$B!"(BWelch $B$N8!Dj(B
        • $B%N%s%Q%i%a%H%j%C%/8!Dj(B($B@55,@-$r2>Dj$;$:(B) : Wilcoxon$B8!Dj(B

      • $B%Q%i%a%H%j%C%/8!Dj$G$O!"(B
        $BN>72$NJ,;6(B($BI8=`JP:9(B)$B$,Ey$7$$$H8+$J$;$k$+$K$h$C$FJ}K!$,0[$J$k(B : F$B8!Dj(B
        • $BEyJ,;6(B : t$B8!Dj(B (Student $B$N(Bt$B8!Dj(B) : Equal
        • $BITEyJ,;6(B : Welch $B$N8!Dj(B : Unequal

      • $BH=CG4p=`(B($B8!Dj4p=`(B)
        • $B$I$l$/$i$$$N3d9g(B($B3NN((B)$B$G$=$N2>@b$,H/@8$9$k$+(B?
        • $B3NN($,>.$5$$(B ==> $B5)$J$3$H(B($BIaDL$G$O$J$$(B) ==> $B:9$,$"$k(B($B!VM-0U!W$H8@$&(B)
        • 5% $BM-0U!"(B1% $BM-0U(B : $B:#$^$G$N47=,$+$i(B

      • $B2>Dj(B($B5"L52>@b(B)$B$KBP$7$F(B
        • $B!VN>72$NJ,;6$OEy$7$$!W$H2>Dj$7$?;~(B : $B!VM-0U!W$KEy$7$$(B/$BEy$7$/$J$$$rH=Dj(B
        • $B!VN>72$NJ?6Q$K:9$O$J$$!W$H2>Dj$7$?;~(B : $B!VM-0U!W$K:9$,$"$k(B/$B$J$$$rH=Dj(B

      • $BO@M}E83+$NM}2r(B : $B=PNO7k2L$N8+J}$@$1$G$J$/!"$I$&$7$F$=$N$h$&$K9M$($k$+$r4^$a$FM}2r$7$F$[$7$$!#(B

    • $B@55,@-$N3NG'(B
      $B3FJ,I[$r@55,J,I[$H8+$FNI$$$+$O!"(B $BBh(B6$B2s(B $B$NBh(B1$B@a$G@bL@$7$?!V(Bproc univariate$B!W$N!V(BNormal Probability Plot$B!W$GH=CG$9$k!#(B $B!V(Bplot $B%*%W%7%g%s!W$rK:$l$J$$$h$&$K!#(B
      1. $B%W%m%0%i%`(B : les0901.sas
         /* Lesson 09-1 */
         /*    File Name = les0901.sas   11/28/07   */
        
        data gakusei;
          infile 'all07be.prn'
            firstobs=2;
          input sex $ shintyou taijyuu kyoui 
                jitaku $ kodukai carryer $ tsuuwa;
        
        if sex^='M' & sex^='F' then delete;          : $B@-JLITL@$O=|30$9$k(B
        
        proc print data=gakusei(obs=5);
        run;
        
        proc sort data=gakusei;
          by sex;
        run;
        proc univariate data=gakusei plot;
          var shintyou taijyuu kyoui kodukai;
          by sex;
        run;
        
      2. $B=PNO7k2L(B : les0901.lst
                                      SAS $B%7%9%F%`(B                             8
                                                11:02 Tuesday, November 27, 2007
        -------------------------------- SEX=F ---------------------------------
                                  Univariate Procedure
        Variable=SHINTYOU
                                     Normal Probability Plot              
                 172.5+                                              +*++*
                      |                                   ******+*+**     
                      |                         **********++              
                      |                 *********+                        
                      |         ********+                                 
                 147.5+*++*+*+**                                          
                       +----+----+----+----+----+----+----+----+----+----+
                           -2        -1         0        +1        +2     
        
                                      SAS $B%7%9%F%`(B                            15
                                                11:02 Tuesday, November 27, 2007
        -------------------------------- SEX=F ---------------------------------
                                  Univariate Procedure
        Variable=TAIJYUU
                                     Normal Probability Plot              
                  62.5+                                                 *+
                      |                                      *****+*+*+++ 
                      |                          **********+*+            
                      |                ***********+                       
                      |      *+***+**+*++                                 
                  37.5++*++*++                                            
                       +----+----+----+----+----+----+----+----+----+----+
                           -2        -1         0        +1        +2     
        
                                      SAS $B%7%9%F%`(B                            22
                                                11:02 Tuesday, November 27, 2007
        -------------------------------- SEX=F ---------------------------------
                                  Univariate Procedure
        Variable=KYOUI
                                     Normal Probability Plot              
                  92.5+                                            +++*+++
                      |                          **********++**+++*       
                  82.5+              ******+**+**+++++                    
                      |     ++*+*+**+++++                                 
                  72.5++++*+                                              
                       +----+----+----+----+----+----+----+----+----+----+
                           -2        -1         0        +1        +2     
        
                                      SAS $B%7%9%F%`(B                            29
                                                11:02 Tuesday, November 27, 2007
        -------------------------------- SEX=F ---------------------------------
                                  Univariate Procedure
        Variable=KODUKAI
                                     Normal Probability Plot              
                325000+                                                  *
                      |                                                   
                      |                                               *   
                175000+                                           ***   ++
                      |                                     ******++++++  
                      |                          +**********              
                 25000+*  * **********************                        
                       +----+----+----+----+----+----+----+----+----+----+
                           -2        -1         0        +1        +2     
        
                                      SAS $B%7%9%F%`(B                            36
                                                11:02 Tuesday, November 27, 2007
        -------------------------------- SEX=M ---------------------------------
                                  Univariate Procedure
        Variable=SHINTYOU
                                     Normal Probability Plot              
                 187.5+                                                *+*
                      |                                      *********++  
                      |                              *********+           
                 172.5+                   ************                    
                      |          **********+                              
                      |  *********+                                       
                 157.5+*++                                                
                       +----+----+----+----+----+----+----+----+----+----+
                           -2        -1         0        +1        +2     
        
                                      SAS $B%7%9%F%`(B                            43
                                                11:02 Tuesday, November 27, 2007
        -------------------------------- SEX=M ---------------------------------
                                  Univariate Procedure
        Variable=TAIJYUU
                                     Normal Probability Plot              
                   105+                                                  *
                      |                                                * *
                      |                                             ***+++
                    75+                                   **********+++   
                      |                     ***************               
                      |     *****************+                            
                    45+*++*++++++                                         
                       +----+----+----+----+----+----+----+----+----+----+
                           -2        -1         0        +1        +2     
        
                                      SAS $B%7%9%F%`(B                            50
                                                11:02 Tuesday, November 27, 2007
        -------------------------------- SEX=M ---------------------------------
                                  Univariate Procedure
        Variable=KYOUI
                                     Normal Probability Plot              
                   115+                                             *  +*+
                      |                                      +***+*++++   
                      |                         ***********+*             
                      |             ************++                        
                      |       *+***+++++                                  
                      |+++++++                                            
                      |     *                                             
                    45+ *                                                 
                       +----+----+----+----+----+----+----+----+----+----+
                           -2        -1         0        +1        +2     
        
                                      SAS $B%7%9%F%`(B                            57
                                                11:02 Tuesday, November 27, 2007
        -------------------------------- SEX=M ---------------------------------
                                  Univariate Procedure
        Variable=KODUKAI
                                     Normal Probability Plot              
                375000+                                                  *
                      |                                                  *
                      |                                                   
                      |                                                *  
                      |                                       ***** ***+++
                      |                                  ******+++++      
                      |                          ++******+                
                 25000+* ***************************                      
                       +----+----+----+----+----+----+----+----+----+----+
                           -2        -1         0        +1        +2     
        
        
      3. $B2r
      4. $B4p=`@~$K$I$NDxEY>h$C$F$$$k$+$GH=CG$9$k(B

      5. $B@55,J,I[$H8@$C$F$bNI$5$=$&(B : $B?HD9(B($BCK(B, $B=w(B)$B!"BN=E(B($B=w(B)
      6. $B@55,J,I[$+$i $B@55,J,I[$H$OA4$/8@$($J$5$=$&(B : $B>.8/$$3[(B($BCK(B, $B=w(B)

      7. $BHf3S$9$kN>72$H$b$,@55,J,I[$N>l9g$O!"%Q%i%a%H%j%C%/8!Dj$,;H$($k!#(B<=== $B?HD9(B
      8. $BHf3S$9$kN>72$N>/$J$/$H$bJRJ}$,@55,J,I[$G$J$$>l9g$O!"%N%s%Q%i%a%H%j%C%/8!Dj$r;H$&!#(B<=== $BBN=E!"6;0O!">.8/$$3[(B

  • $B%Q%i%a%H%j%C%/8!Dj(B : t $B8!Dj!"(BWelch $B$N8!Dj(B
    1. $B%W%m%0%i%`(B : les0902.sas
       /* Lesson 09-2 */
       /*    File Name = les0902.sas   11/28/07   */
      
      data gakusei;
        infile 'all07be.prn'
          firstobs=2;
        input sex $ shintyou taijyuu kyoui 
              jitaku $ kodukai carryer $ tsuuwa;
      
      if sex^='M' & sex^='F' then delete;
      
      proc print data=gakusei(obs=10);
      run;
      
      proc ttest data=gakusei;               : t$B8!Dj(B
        class sex;                           : $BJ,N`$7$?$$FC@-JQ?t$N;XDj(B
        var shintyou taijyuu kyoui kodukai;  : $BHf3S$7$?$$JQNLL>(B
      run;                                   : 
      
    2. $B=PNO7k2L(B : les0902.lst
                                    SAS $B%7%9%F%`(B                             2
                                              11:02 Tuesday, November 27, 2007
                                  TTEST PROCEDURE
      Variable: SHINTYOU                                             
      
      SEX       N                Mean             Std Dev           Std Error
      -----------------------------------------------------------------------
      F       121        159.02231405          5.33865600          0.48533236
      M       244        172.16557377          5.37439089          0.34406012
      
      Variances        T       DF    Prob>|T|
      ---------------------------------------
      Unequal   -22.0926    240.9      0.0001
      Equal     -22.0429    363.0      0.0000
      
      For H0: Variances are equal, F' = 1.01   DF = (243,120)   Prob>F' = 0.9470
                                   
                                    SAS $B%7%9%F%`(B                             3
                                              11:02 Tuesday, November 27, 2007
                                  TTEST PROCEDURE
      Variable: TAIJYUU                                              
      
      SEX       N                Mean             Std Dev           Std Error
      -----------------------------------------------------------------------
      F        85         48.69411765          4.67226755          0.50677857
      M       244         62.17540984          7.92711460          0.50748151
      
      Variances        T       DF    Prob>|T|
      ---------------------------------------
      Unequal   -18.7974    250.0      0.0001
      Equal     -14.8002    327.0      0.0000
      
      For H0: Variances are equal, F' = 2.88   DF = (243,84)   Prob>F' = 0.0000
      
                                    SAS $B%7%9%F%`(B                             4
                                              11:02 Tuesday, November 27, 2007
                                  TTEST PROCEDURE
      Variable: KYOUI                                                
      
      SEX       N                Mean             Std Dev           Std Error
      -----------------------------------------------------------------------
      F        44         82.93181818          3.88436177          0.58558957
      M        71         88.09859155          9.68526853          1.14942990
      
      Variances        T       DF    Prob>|T|
      ---------------------------------------
      Unequal    -4.0052    100.1      0.0001
      Equal      -3.3701    113.0      0.0010
      
      For H0: Variances are equal, F' = 6.22   DF = (70,43)   Prob>F' = 0.0000
      
                                    SAS $B%7%9%F%`(B                             5
                                              11:02 Tuesday, November 27, 2007
                                  TTEST PROCEDURE
      Variable: KODUKAI                                              
      
      SEX       N                Mean             Std Dev           Std Error
      -----------------------------------------------------------------------
      F       117      47846.15384615      44343.94671293       4099.59932384
      M       234      48350.42735043      52359.24376404       3422.83084192
      
      Variances        T       DF    Prob>|T|
      ---------------------------------------
      Unequal    -0.0944    269.0      0.9248
      Equal      -0.0894    349.0      0.9288
      
      For H0: Variances are equal, F' = 1.39   DF = (233,116)   Prob>F' = 0.0449
      
    3. $B7k2L$N8+J}(B : $BFsCJ3,!"$3$N%G!<%?$G$O(B?
      • $BEyJ,;6$H8@$($k$+(B? : Prob> F'
        • $B?HD9(B(94.7%)$B$H>.8/$$(B(4.49%)$B$OEyJ,;6$G$"$k$H8@$($k(B ===> t$B8!Dj(B : Equal $B$N9`(B
        • $BBN=E(B(0.00%)$B$H6;0O(B(0.00%)$B$OEyJ,;6$G$"$k$H8@$($J$$(B ===> Welch$B$N8!Dj(B : Unequal $B$N9`(B
      • $BJ?6Q$K:9$,$"$k$H8@$($k$+(B? : Prob>|T|
        • $B?HD9(B(0.00%, Equal $B$N9`(B)$B$dBN=E(B(0.01%, Unequal $B$N9`(B)$B!"6;0O(B(0.01%, Unequal $B$N9`(B)$B$O@-JL$K$h$C$FJ?6Q$K:9$,$"$k$H8@$($k!#(B
        • $B>.8/$$(B(92.9%, Equal $B$N9`(B)$B$O@-JL$K$h$C$FJ?6Q$K:9$,$"$k$H$O8@$($J$$!#(B
        • $B$?$@$7!"BN=E!"6;0O!">.8/$$3[$NJ,I[$N$I$A$i$+0lJ}!"$^$?$ON>J}$,(B $B@55,J,I[$H$O8@$($J$$$N$G!"?HD90J30$N7kO@$O?.Xa@-$K7g$1$k!#(B $B$h$C$F!"BN=E!"6;0O!">.8/$$3[$K$D$$$F$O

        • $B8!Dj4p=`(B
          • $B$I$l$/$i$$$N3d9g(B($B3NN((B)$B$G$=$N2>@b$,H/@8$9$k$+(B?
          • $B3NN($,>.$5$$(B ==> $B5)$J$3$H(B($BIaDL$G$O$J$$(B) ==> $BM-0U(B($BJ,;6$,Ey$7$$$H$O8@$($J$$!"J?6Q$K:9$,$"$k(B)
          • 5% $BM-0U!"(B1% $BM-0U(B : $B:#$^$G$N47=,$+$i(B

      • [$B1i=,(B1] $B>e5-$N7k2L$r!"<+Bp@8(B/$B2<=I@84V$N:9$H$7$F(B $B8!Dj$7$?>l9g!"?HD9!"BN=E!"6;0O!">.8/$$3[$K:9$,$"$k$H8@$($k$+(B $B3F<+$G7kO@$E$1$F$_$h(B

  • $B%N%s%Q%i%a%H%j%C%/8!Dj(B : Wilcoxon $B8!Dj(B
    1. $B%W%m%0%i%`(B : les0903.sas

       /* Lesson 09-3 */
       /*    File Name = les0903.sas   11/28/07   */
      
      data gakusei;
        infile 'all07be.prn'
          firstobs=2;
        input sex $ shintyou taijyuu kyoui 
              jitaku $ kodukai carryer $ tsuuwa;
      
      if sex^='M' & sex^='F' then delete;
      
      proc print data=gakusei(obs=10);
      run;
      
      proc npar1way data=gakusei wilcoxon;   : wilcoxon $B8!Dj(B
        class sex;                           : $BJ,N`$7$?$$FC@-JQ?t$N;XDj(B
        var shintyou taijyuu kyoui kodukai;  : $BHf3S$7$?$$JQNLL>(B
      run;                                   : 
      
    2. $B=PNO7k2L(B : les0903.lst
                                    SAS $B%7%9%F%`(B                             2
                                              11:02 Tuesday, November 27, 2007
                         N P A R 1 W A Y  P R O C E D U R E
      
                 Wilcoxon Scores (Rank Sums) for Variable SHINTYOU
                             Classified by Variable SEX
      
                              Sum of     Expected      Std Dev         Mean
         SEX          N       Scores     Under H0     Under H0        Score
      
         F          121       8512.0      22143.0   948.311374    70.347107
         M          244      58283.0      44652.0   948.311374   238.864754
                         Average Scores Were Used for Ties
      
               Wilcoxon 2-Sample Test (Normal Approximation)
               (with Continuity Correction of .5)
      
                                    SAS $B%7%9%F%`(B                             3
                                              11:02 Tuesday, November 27, 2007
                         N P A R 1 W A Y  P R O C E D U R E
      
               S =  8512.00   Z = -14.3734   Prob > |Z| = 0.0001
      
               T-Test Approx. Significance = 0.0001
      
               Kruskal-Wallis Test (Chi-Square Approximation)
               CHISQ =  206.61   DF =  1   Prob > CHISQ = 0.0001
      
                                    SAS $B%7%9%F%`(B                             4
                                              11:02 Tuesday, November 27, 2007
                         N P A R 1 W A Y  P R O C E D U R E
      
                  Wilcoxon Scores (Rank Sums) for Variable TAIJYUU
                             Classified by Variable SEX
      
                              Sum of     Expected      Std Dev         Mean
         SEX          N       Scores     Under H0     Under H0        Score
      
         F           85    4619.5000      14025.0   754.518918    54.347059
         M          244   49665.5000      40260.0   754.518918   203.547131
                         Average Scores Were Used for Ties
      
               Wilcoxon 2-Sample Test (Normal Approximation)
               (with Continuity Correction of .5)
      
                                    SAS $B%7%9%F%`(B                             5
                                              11:02 Tuesday, November 27, 2007
                         N P A R 1 W A Y  P R O C E D U R E
      
               S =  4619.50   Z = -12.4649   Prob > |Z| = 0.0001
      
               T-Test Approx. Significance = 0.0001
      
               Kruskal-Wallis Test (Chi-Square Approximation)
               CHISQ =  155.39   DF =  1   Prob > CHISQ = 0.0001
      
                                    SAS $B%7%9%F%`(B                             6
                                              11:02 Tuesday, November 27, 2007
                         N P A R 1 W A Y  P R O C E D U R E
      
                   Wilcoxon Scores (Rank Sums) for Variable KYOUI
                             Classified by Variable SEX
      
                              Sum of     Expected      Std Dev         Mean
         SEX          N       Scores     Under H0     Under H0        Score
      
         F           44       1702.0       2552.0   172.876794   38.6818182
         M           71       4968.0       4118.0   172.876794   69.9718310
                         Average Scores Were Used for Ties
      
               Wilcoxon 2-Sample Test (Normal Approximation)
               (with Continuity Correction of .5)
      
                                    SAS $B%7%9%F%`(B                             7
                                              11:02 Tuesday, November 27, 2007
                         N P A R 1 W A Y  P R O C E D U R E
      
               S =  1702.00   Z = -4.91390   Prob > |Z| = 0.0001
      
               T-Test Approx. Significance = 0.0001
      
               Kruskal-Wallis Test (Chi-Square Approximation)
               CHISQ =  24.175   DF =  1   Prob > CHISQ = 0.0001
      
                                    SAS $B%7%9%F%`(B                             8
                                              11:02 Tuesday, November 27, 2007
                         N P A R 1 W A Y  P R O C E D U R E
      
                  Wilcoxon Scores (Rank Sums) for Variable KODUKAI
                             Classified by Variable SEX
      
                              Sum of     Expected      Std Dev         Mean
         SEX          N       Scores     Under H0     Under H0        Score
      
         F          117      21577.0      20592.0   891.720488   184.418803
         M          234      40199.0      41184.0   891.720488   171.790598
                         Average Scores Were Used for Ties
      
               Wilcoxon 2-Sample Test (Normal Approximation)
               (with Continuity Correction of .5)
      
                                    SAS $B%7%9%F%`(B                             9
                                              11:02 Tuesday, November 27, 2007
                         N P A R 1 W A Y  P R O C E D U R E
      
               S =  21577.0   Z =  1.10405   Prob > |Z| = 0.2696
      
               T-Test Approx. Significance = 0.2703
      
               Kruskal-Wallis Test (Chi-Square Approximation)
               CHISQ =  1.2202   DF =  1   Prob > CHISQ = 0.2693
      
    3. $B7k2L$N8+J}(B : Prob>|Z|
      • $B$3$N.8/$$$N8!Dj7k2L$O%Q%i%a%H%j%C%/
      • $B?HD9(B(0.01%)$B$dBN=E(B(0.01%)$B!"6;0O(B(0.01%)$B$O@-JL$K$h$C$FJ?6Q$K:9$,$"$k$H8@$($k!#(B
      • $B>.8/$$(B(27.0%)$B$O@-JL$K$h$C$FJ?6Q$K:9$,$"$k$H$O8@$($J$$!#(B

    4. [$B1i=,(B2] $B>e5-$N7k2L$r!"<+Bp@8(B/$B2<=I@84V$N:9$H$7$F(B $B8!Dj$7$?>l9g!"?HD9!"BN=E!"6;0O!">.8/$$3[$K:9$,$"$k$H8@$($k$+(B $B3F<+$G7kO@$E$1$F$_$h(B

  • $BBP1~$N$"$k(B 2$B72$N8!Dj(B
    1. $B%W%m%0%i%`(B : les0904.sas

       /* Lesson 09-4 */
       /*    File Name = les0904.sas   11/28/07   */
      
      data pair;                                     :
        input x y @@;                                : @@ $B$O(B 1$B9T$KJ#?t$N%G!<%?$,$"$k$3$H$r<($9(B 
        dif=x-y;                                     : $B:9(B(difference)$B$r7W;;$9$k(B
      cards;                                         : $B%G!<%?$r%W%m%0%i%`Fb$K5-=R$9$k(B
        3.51 3.39  3.07 3.39  3.29 3.20  3.03 3.11   : x1,y1,  x2,y2,  x3,y3,  x4,y4,
        3.38 3.17  3.30 3.09  3.15 3.17  3.25 3.09   : x5,y5,  x6,y6,  x7,y7,  x8,y8
      ;                                              :
                                                     :
      proc print data=pair;                          :
      run;                                           :
      proc univariate data=pair plot;                :
        var dif;                                     : $B:9$K$D$$$F(B
      run;                                           :
      
    2. $B=PNO7k2L(B : les0904.lst
                                    SAS $B%7%9%F%`(B                             1
                                              11:02 Tuesday, November 27, 2007
      
                            OBS      X       Y      DIF
      
                             1     3.51    3.39     0.12
                             2     3.07    3.39    -0.32
                             3     3.29    3.20     0.09
                             4     3.03    3.11    -0.08
                             5     3.38    3.17     0.21
                             6     3.30    3.09     0.21
                             7     3.15    3.17    -0.02
                             8     3.25    3.09     0.16
      
                                    SAS $B%7%9%F%`(B                             2
                                              11:02 Tuesday, November 27, 2007
                                Univariate Procedure
      Variable=DIF
                                      Moments
      
                      N                 8  Sum Wgts          8
                      Mean        0.04625  Sum            0.37
                      Std Dev    0.180629  Variance   0.032627
                      Skewness   -1.31523  Kurtosis   1.511099
                      USS          0.2455  CSS        0.228388
                      CV         390.5489  Std Mean   0.063862
                      T:Mean=0   0.724218  Pr>|T|       0.4924
                      Num ^= 0          8  Num > 0           5
                      M(Sign)           1  Pr>=|M|      0.7266
                      Sgn Rank          7  Pr>=|S|      0.3594
      
                                    SAS $B%7%9%F%`(B                             5
                                              11:02 Tuesday, November 27, 2007
                                Univariate Procedure
      Variable=DIF
                  Stem Leaf                     #             Boxplot
                     2 11                       2                |   
                     1 26                       2             +-----+
                     0 9                        1             |  +  |
                    -0 82                       2             +-----+
                    -1                                           |   
                    -2                                           |   
                    -3 2                        1                |   
                       ----+----+----+----+              
                   Multiply Stem.Leaf by 10**-1          
      
                                    SAS $B%7%9%F%`(B                             6
                                              11:02 Tuesday, November 27, 2007
                                Univariate Procedure
      Variable=DIF
                                   Normal Probability Plot              
                0.25+                                  *++++*           
                    |                           *++*+++                 
                    |                       *++++                       
               -0.05+                *+++*++                            
                    |            +++++                                  
                    |      ++++++                                       
               -0.35+ +++++     *                                       
                     +----+----+----+----+----+----+----+----+----+----+
                         -2        -1         0        +1        +2     
      
    3. $B7k2L$N8+J}(B :
      • t $BE}7WNL$rE,MQ$9$k>l9g$O!":9$NJ,I[$,@55,J,I[$K=>$C$F$$$k$3$H$r2>Dj$7$F$$$k(B
      • $B:9$NJ,I[$,@55,J,I[$r$7$F$$$k$+$r3NG'$9$k$K$O(B : Normal Probability Plot

      • T:Mean=0 : $BJ?6Q(B=0 ($B5"L52>@b(B)$B$N8!Dj$N$?$a$N(B t $BE}7WNL(B
      • Pr>=|T| : t $BE}7WNL$NN>B&M-0U3NN((B
        • t $BE}7WNL$rE,MQ$9$k>l9g$O!":9$NJ,I[$,@55,J,I[$K=>$C$F$$$k$3$H$r2>Dj$7$F$$$k(B
        • $B:9$NJ,I[$,@55,J,I[$r$7$F$$$k$+$r3NG'$9$k$K$O(B : Normal Probability Plot
      • M(Sign) : $BJl=8CD$NCf1{CM(B($B%a%G%#%"%s(B)$B$,%<%m$G$"$k$H$$$&2>@b$r8!Dj$9$k$?$a$NId9gIU$-=g0LOB8!DjE}7WNL(B
      • Pr>=|M| : $BJl=8CD$NCf1{CM(B($B%a%G%#%"%s(B)$B$,%<%m$G$"$k$H$$$&2>@b$N2<$G!"$=$NId9gE}7WNL$h$j$bBg$-$$@dBPCM$,F@$i$l$k3NN((B
      • Sgn Rank : $BJ?6Q(B=0 ($B5"L52>@b(B)$B$N8!Dj$N$?$a$NId9gIU$-=g0LOB8!DjE}7WNL(B
      • Pr>=|S| : $BId9gIU$-=g0LOB8!DjE}7WNL$N$?$a$N6a;wE*M-0U3NN((B

      • $B$3$NNc$G$O!">/?t%5%s%W%k$J$N@55,J,I[$+$I$&$+$NH=CG$O$G$-$J$$$H9M$($?J}$,NI$$$G$"$m$&!#(B
      • $B$I$NE}7W;XI8$rMQ$$$F$b!":9$,%<%m$G$"$k$3$H$,7k9=$J3NN($G5/$j$=$&(B : 49.2%(Pr>=|T| $B$N9`(B), 72.7%(Pr>=|M| $B$N9`(B), 35.9%(Pr>=|S| $B$N9`(B)$B!#(B
        $B$D$^$j!":9$,$"$k$H$O8@$($J$$!#Lt$,8z$$$F$$$k$H$OCGDj$G$-$J$$!#(B

  • $B
  • $BFsJQNL$N4X78(B
  • $BB?JQNL2r@O(B : $BC12s5"J,@O!"=E2s5"J,@O!"(B...
  • ... [DIR]$B9V5A$N%[!<%`%Z!<%8(B$B$XLa$j$^$9(B