/* Lesson 10-1 */
/* File Name = les1001.sas 06/21/07 */
data gakusei;
infile 'all07ae.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
if sex^='M' & sex^='F' then delete; : 性別不明は除外する
proc print data=gakusei(obs=5);
run;
proc sort data=gakusei;
by sex;
run;
proc univariate data=gakusei plot;
var shintyou taijyuu kyoui kodukai;
by sex;
run;
SAS システム 8
10:45 Thursday, June 21, 2007
-------------------------------- SEX=F ---------------------------------
Univariate Procedure
Variable=SHINTYOU
Normal Probability Plot
172.5+ +*++*
| *******+*+**
| **********++
| *********+
| ********+
147.5+*++*+*+**
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
SAS システム 15
10:45 Thursday, June 21, 2007
-------------------------------- SEX=F ---------------------------------
Univariate Procedure
Variable=TAIJYUU
Normal Probability Plot
62.5+ *+
| *****+*+*++
| **********+*
| ***********+
| *+***+****++
37.5++*++*++
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
SAS システム 22
10:45 Thursday, June 21, 2007
-------------------------------- SEX=F ---------------------------------
Univariate Procedure
Variable=KYOUI
Normal Probability Plot
92.5+ ++++*+++
| **********+*+*+++*
82.5+ ********+**+*++++
| ++*++**+*++++
72.5++++*+
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
SAS システム 29
10:45 Thursday, June 21, 2007
-------------------------------- SEX=F ---------------------------------
Univariate Procedure
Variable=KODUKAI
Normal Probability Plot
325000+ *
|
| *
175000+ * ** +++
| ******+++++
| +**********
25000+* * ** *******************
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
SAS システム 36
10:45 Thursday, June 21, 2007
-------------------------------- SEX=M ---------------------------------
Univariate Procedure
Variable=SHINTYOU
Normal Probability Plot
187.5+ *+*
| *********++
| ********++
172.5+ ************
| **********+
| *********+
157.5+*++
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
SAS システム 43
10:45 Thursday, June 21, 2007
-------------------------------- SEX=M ---------------------------------
Univariate Procedure
Variable=TAIJYUU
Normal Probability Plot
105+ *
| * *
| ***+++
75+ **********+++
| ***************
| *****************+
45+*++*++++++
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
SAS システム 50
10:45 Thursday, June 21, 2007
-------------------------------- SEX=M ---------------------------------
Univariate Procedure
Variable=KYOUI
Normal Probability Plot
115+ * +*+
| +***+*++++
| ***********+*
| ************++
| *+***+++++
|+++++++
| *
45+ *
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
SAS システム 57
10:45 Thursday, June 21, 2007
-------------------------------- SEX=M ---------------------------------
Univariate Procedure
Variable=KODUKAI
Normal Probability Plot
375000+ *
| *
|
| *
| ***** ***+++
| ******+++++
| ++******+
25000+* ***************************
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
/* Lesson 10-2 */
/* File Name = les1002.sas 06/21/07 */
data gakusei;
infile 'all07ae.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
if sex^='M' & sex^='F' then delete;
proc print data=gakusei(obs=10);
run;
proc ttest data=gakusei; : t検定
class sex; : 分類したい特性変数の指定
var shintyou taijyuu kyoui kodukai; : 比較したい変量名
run; :
SAS システム 2
10:45 Thursday, June 21, 2007
TTEST PROCEDURE
Variable: SHINTYOU
SEX N Mean Std Dev Std Error
-----------------------------------------------------------------------
F 117 159.09145299 5.34921155 0.49453478
M 242 172.18760331 5.39094169 0.34654286
Variances T DF Prob>|T|
---------------------------------------
Unequal -21.6871 231.1 0.0001
Equal -21.6283 357.0 0.0000
For H0: Variances are equal, F' = 1.02 DF = (241,116) Prob>F' = 0.9376
SAS システム 3
10:45 Thursday, June 21, 2007
TTEST PROCEDURE
Variable: TAIJYUU
SEX N Mean Std Dev Std Error
-----------------------------------------------------------------------
F 83 48.69879518 4.72299755 0.51841633
M 242 62.23884298 7.92773766 0.50961428
Variances T DF Prob>|T|
---------------------------------------
Unequal -18.6257 240.6 0.0001
Equal -14.6829 323.0 0.0000
For H0: Variances are equal, F' = 2.82 DF = (241,82) Prob>F' = 0.0000
SAS システム 4
10:45 Thursday, June 21, 2007
TTEST PROCEDURE
Variable: KYOUI
SEX N Mean Std Dev Std Error
-----------------------------------------------------------------------
F 43 83.00000000 3.90360029 0.59529346
M 71 88.09859155 9.68526853 1.14942990
Variances T DF Prob>|T|
---------------------------------------
Unequal -3.9389 100.5 0.0002
Equal -3.2894 112.0 0.0013
For H0: Variances are equal, F' = 6.16 DF = (70,42) Prob>F' = 0.0000
SAS システム 5
10:45 Thursday, June 21, 2007
TTEST PROCEDURE
Variable: KODUKAI
SEX N Mean Std Dev Std Error
-----------------------------------------------------------------------
F 114 48403.50877193 44706.80677090 4187.17609027
M 232 48637.93103448 52490.92216742 3446.19787366
Variances T DF Prob>|T|
---------------------------------------
Unequal -0.0432 259.7 0.9656
Equal -0.0409 344.0 0.9674
For H0: Variances are equal, F' = 1.38 DF = (231,113) Prob>F' = 0.0553
/* Lesson 10-3 */
/* File Name = les1003.sas 06/21/07 */
data gakusei;
infile 'all07ae.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
if sex^='M' & sex^='F' then delete;
proc print data=gakusei(obs=10);
run;
proc npar1way data=gakusei wilcoxon; : wilcoxon 検定
class sex; : 分類したい特性変数の指定
var shintyou taijyuu kyoui kodukai; : 比較したい変量名
run; :
SAS システム 2
10:45 Thursday, June 21, 2007
N P A R 1 W A Y P R O C E D U R E
Wilcoxon Scores (Rank Sums) for Variable SHINTYOU
Classified by Variable SEX
Sum of Expected Std Dev Mean
SEX N Scores Under H0 Under H0 Score
F 117 8015.5000 21060.0 921.035482 68.508547
M 242 56604.5000 43560.0 921.035482 233.902893
Average Scores Were Used for Ties
Wilcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)
SAS システム 3
10:45 Thursday, June 21, 2007
N P A R 1 W A Y P R O C E D U R E
S = 8015.50 Z = -14.1623 Prob > |Z| = 0.0001
T-Test Approx. Significance = 0.0001
Kruskal-Wallis Test (Chi-Square Approximation)
CHISQ = 200.59 DF = 1 Prob > CHISQ = 0.0001
SAS システム 4
10:45 Thursday, June 21, 2007
N P A R 1 W A Y P R O C E D U R E
Wilcoxon Scores (Rank Sums) for Variable TAIJYUU
Classified by Variable SEX
Sum of Expected Std Dev Mean
SEX N Scores Under H0 Under H0 Score
F 83 4424.0 13529.0 738.002845 53.301205
M 242 48551.0 39446.0 738.002845 200.623967
Average Scores Were Used for Ties
Wilcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)
SAS システム 5
10:45 Thursday, June 21, 2007
N P A R 1 W A Y P R O C E D U R E
S = 4424.00 Z = -12.3367 Prob > |Z| = 0.0001
T-Test Approx. Significance = 0.0001
Kruskal-Wallis Test (Chi-Square Approximation)
CHISQ = 152.21 DF = 1 Prob > CHISQ = 0.0001
SAS システム 6
10:45 Thursday, June 21, 2007
N P A R 1 W A Y P R O C E D U R E
Wilcoxon Scores (Rank Sums) for Variable KYOUI
Classified by Variable SEX
Sum of Expected Std Dev Mean
SEX N Scores Under H0 Under H0 Score
F 43 1648.50000 2472.50000 170.162136 38.3372093
M 71 4906.50000 4082.50000 170.162136 69.1056338
Average Scores Were Used for Ties
Wilcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)
SAS システム 7
10:45 Thursday, June 21, 2007
N P A R 1 W A Y P R O C E D U R E
S = 1648.50 Z = -4.83950 Prob > |Z| = 0.0001
T-Test Approx. Significance = 0.0001
Kruskal-Wallis Test (Chi-Square Approximation)
CHISQ = 23.449 DF = 1 Prob > CHISQ = 0.0001
SAS システム 8
10:45 Thursday, June 21, 2007
N P A R 1 W A Y P R O C E D U R E
Wilcoxon Scores (Rank Sums) for Variable KODUKAI
Classified by Variable SEX
Sum of Expected Std Dev Mean
SEX N Scores Under H0 Under H0 Score
F 114 20755.5000 19779.0 870.131155 182.065789
M 232 39275.5000 40252.0 870.131155 169.290948
Average Scores Were Used for Ties
Wilcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)
SAS システム 9
10:45 Thursday, June 21, 2007
N P A R 1 W A Y P R O C E D U R E
S = 20755.5 Z = 1.12167 Prob > |Z| = 0.2620
T-Test Approx. Significance = 0.2628
Kruskal-Wallis Test (Chi-Square Approximation)
CHISQ = 1.2594 DF = 1 Prob > CHISQ = 0.2618
/* Lesson 10-4 */
/* File Name = les1004.sas 06/21/07 */
data pair; :
input x y @@; : @@ は 1行に複数のデータがあることを示す
dif=x-y; : 差(difference)を計算する
cards; : データをプログラム内に記述する
3.51 3.39 3.07 3.39 3.29 3.20 3.03 3.11 : x1,y1, x2,y2, x3,y3, x4,y4,
3.38 3.17 3.30 3.09 3.15 3.17 3.25 3.09 : x5,y5, x6,y6, x7,y7, x8,y8
; :
:
proc print data=pair; :
run; :
proc univariate data=pair plot; :
var dif; : 差について
run; :
SAS システム 1
10:45 Thursday, June 21, 2007
OBS X Y DIF
1 3.51 3.39 0.12
2 3.07 3.39 -0.32
3 3.29 3.20 0.09
4 3.03 3.11 -0.08
5 3.38 3.17 0.21
6 3.30 3.09 0.21
7 3.15 3.17 -0.02
8 3.25 3.09 0.16
SAS システム 2
10:45 Thursday, June 21, 2007
Univariate Procedure
Variable=DIF
Moments
N 8 Sum Wgts 8
Mean 0.04625 Sum 0.37
Std Dev 0.180629 Variance 0.032627
Skewness -1.31523 Kurtosis 1.511099
USS 0.2455 CSS 0.228388
CV 390.5489 Std Mean 0.063862
T:Mean=0 0.724218 Pr>|T| 0.4924
Num ^= 0 8 Num > 0 5
M(Sign) 1 Pr>=|M| 0.7266
Sgn Rank 7 Pr>=|S| 0.3594
SAS システム 5
10:45 Thursday, June 21, 2007
Univariate Procedure
Variable=DIF
Stem Leaf # Boxplot
2 11 2 |
1 26 2 +-----+
0 9 1 | + |
-0 82 2 +-----+
-1 |
-2 |
-3 2 1 |
----+----+----+----+
Multiply Stem.Leaf by 10**-1
SAS システム 6
10:45 Thursday, June 21, 2007
Univariate Procedure
Variable=DIF
Normal Probability Plot
0.25+ *++++*
| *++*+++
| *++++
-0.05+ *+++*++
| +++++
| ++++++
-0.35+ +++++ *
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2