/* Lesson 13-1 */
/* File Name = les1301.sas 07/13/06 */
data food; :
infile 'food.dat'; : ファイルの読み込み
input X01-X10; : 変量リスト、連続的に
label X01='M(-15)' : 各変量に解りやすい名前を付ける
X02='M(16-20)' : M : 男性
X03='M(21-30)' : F : 女性
X04='M(31-40)' : ()内 : 年齢
X05='M(41-)' :
X06='F(-15)' :
X07='F(16-20)' :
X08='F(21-30)' :
X09='F(31-40)' :
X10='F(41-)'; :
:
proc print data=food(obs=10); : データの表示
run; :
proc factor data=food; : オプションを付けないと主成分分析
var X01-X10; : 解析に使う変量リスト
run; :
SAS システム 1
17:22 Wednesday, July 12, 2006
OBS X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
1 7.69 7.31 7.47 7.76 7.87 7.51 7.24 7.70 7.91 7.95
2 6.59 5.56 6.21 6.04 5.81 6.64 6.11 6.53 6.44 6.64
3 4.55 4.18 4.36 4.25 4.53 4.60 3.66 4.04 3.68 4.43
4 6.78 6.11 6.30 5.98 5.56 6.37 6.29 5.43 5.32 5.28
5 6.47 6.24 6.02 5.42 5.88 6.00 5.60 4.60 5.40 5.95
SAS システム 2
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 10 Average = 1
1 2 3 4 5
Eigenvalue 6.8280 1.7619 0.7545 0.2624 0.1216
Difference 5.0661 1.0074 0.4921 0.1408 0.0236
Proportion 0.6828 0.1762 0.0754 0.0262 0.0122
Cumulative 0.6828 0.8590 0.9344 0.9607 0.9728
6 7 8 9 10
Eigenvalue 0.0980 0.0721 0.0441 0.0358 0.0219
Difference 0.0259 0.0280 0.0083 0.0139
Proportion 0.0098 0.0072 0.0044 0.0036 0.0022
Cumulative 0.9826 0.9898 0.9942 0.9978 1.0000
SAS システム 3
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
2 factors will be retained by the MINEIGEN criterion.
SAS システム 4
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
Factor Pattern
FACTOR1 FACTOR2
X01 0.74741 -0.59244 M(-15)
X02 0.86579 -0.31836 M(16-20)
X03 0.84491 0.22079 M(21-30)
X04 0.78216 0.47602 M(31-40)
X05 0.68129 0.67325 M(41-)
X06 0.80647 -0.54140 F(-15)
X07 0.89959 -0.33542 F(16-20)
X08 0.90901 -0.04289 F(21-30)
X09 0.90316 0.21817 F(31-40)
X10 0.79262 0.35477 F(41-)
SAS システム 5
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
Variance explained by each factor
FACTOR1 FACTOR2
6.827955 1.761873
Final Communality Estimates: Total = 8.589828
X01 X02 X03 X04 X05
0.909618 0.850950 0.762624 0.838371 0.917413
X06 X07 X08 X09 X10
0.943520 0.921775 0.828147 0.863298 0.754112
/* Lesson 13-2 */
/* File Name = les1302.sas 07/13/06 */
data food;
infile 'food.dat';
input X01-X10;
label X01='M(-15)'
X02='M(16-20)'
X03='M(21-30)'
X04='M(31-40)'
X05='M(41-)'
X06='F(-15)'
X07='F(16-20)'
X08='F(21-30)'
X09='F(31-40)'
X10='F(41-)';
proc print data=food(obs=10);
run; :
proc factor data=food nfactor=3 out=fscore; : 因子数3、出力の保存
var X01-X10; :
run; :
proc plot data=fscore; :
plot factor1*factor2/vref=0.0 href=0.0; : 第1因子 x 第2因子、軸
plot factor2*factor3/vref=0.0 href=0.0; : 第2因子 x 第3因子、軸
run; :
SAS システム 2
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 10 Average = 1
1 2 3 4 5
Eigenvalue 6.8280 1.7619 0.7545 0.2624 0.1216
Difference 5.0661 1.0074 0.4921 0.1408 0.0236
Proportion 0.6828 0.1762 0.0754 0.0262 0.0122
Cumulative 0.6828 0.8590 0.9344 0.9607 0.9728
6 7 8 9 10
Eigenvalue 0.0980 0.0721 0.0441 0.0358 0.0219
Difference 0.0259 0.0280 0.0083 0.0139
Proportion 0.0098 0.0072 0.0044 0.0036 0.0022
Cumulative 0.9826 0.9898 0.9942 0.9978 1.0000
SAS システム 3
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
3 factors will be retained by the NFACTOR criterion.
SAS システム 4
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
Factor Pattern
FACTOR1 FACTOR2 FACTOR3
X01 0.74741 -0.59244 0.16808 M(-15)
X02 0.86579 -0.31836 0.29190 M(16-20)
X03 0.84491 0.22079 0.38417 M(21-30)
X04 0.78216 0.47602 0.32604 M(31-40)
X05 0.68129 0.67325 0.11067 M(41-)
X06 0.80647 -0.54140 -0.07270 F(-15)
X07 0.89959 -0.33542 -0.14888 F(16-20)
X08 0.90901 -0.04289 -0.25110 F(21-30)
X09 0.90316 0.21817 -0.27989 F(31-40)
X10 0.79262 0.35477 -0.45389 F(41-)
SAS システム 5
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
Variance explained by each factor
FACTOR1 FACTOR2 FACTOR3
6.827955 1.761873 0.754451
Final Communality Estimates: Total = 9.344279
X01 X02 X03 X04 X05
0.937870 0.936157 0.910210 0.944673 0.929662
X06 X07 X08 X09 X10
0.948805 0.943939 0.891197 0.941637 0.960129
SAS システム 6
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
Scoring Coefficients Estimated by Regression
Squared Multiple Correlations of the Variables with each Factor
FACTOR1 FACTOR2 FACTOR3
1.000000 1.000000 1.000000
SAS システム 7
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
Standardized Scoring Coefficients
FACTOR1 FACTOR2 FACTOR3
X01 0.10946 -0.33626 0.22279 M(-15)
X02 0.12680 -0.18069 0.38691 M(16-20)
X03 0.12374 0.12531 0.50920 M(21-30)
X04 0.11455 0.27018 0.43215 M(31-40)
X05 0.09978 0.38212 0.14670 M(41-)
X06 0.11811 -0.30729 -0.09636 F(-15)
X07 0.13175 -0.19038 -0.19733 F(16-20)
X08 0.13313 -0.02434 -0.33282 F(21-30)
X09 0.13227 0.12383 -0.37099 F(31-40)
X10 0.11609 0.20136 -0.60162 F(41-)
SAS システム 8
17:22 Wednesday, July 12, 2006
プロット : FACTOR1*FACTOR2. 凡例: A = 1 OBS, B = 2 OBS, ...
5 + |
| |
FACTOR1 | |
| A A |A B A
| A A A AA BBA AAADA BB A AA A A A
0 +----A-------A----AAB--AAA----ACA---BABAAA-B--AAAAA--AA-A--A--A-
| A AA A A A A A A A | ABAAABB BA A A A
| A A A | A A
| | A
| |
-5 + |
--+-----------+-----------+-----------+-----------+-----------+-
-3 -2 -1 0 1 2
FACTOR2
SAS システム 9
17:22 Wednesday, July 12, 2006
プロット : FACTOR2*FACTOR3. 凡例: A = 1 OBS, B = 2 OBS, ...
FACTOR2 | |
2.5 + |
| A A A A | AC A A A
| AA ABA ADABA AB| B A AA AA A
0.0 +---BA----AAAA-CBA--A-+-ECB-A------A----A--------A--------------
| A A BAA ABB AB AABAB
| B AA B AAAAA A A
-2.5 + | A
| |
| |
-5.0 + |
--+---------+---------+---------+---------+---------+---------+-
-2 -1 0 1 2 3 4
FACTOR3
/* Lesson 13-3 */
/* File Name = les1303.sas 07/13/06 */
data food;
infile 'food.dat';
input X01-X10;
label X01='M(-15)'
X02='M(16-20)'
X03='M(21-30)'
X04='M(31-40)'
X05='M(41-)'
X06='F(-15)'
X07='F(16-20)'
X08='F(21-30)'
X09='F(31-40)'
X10='F(41-)';
proc print data=food(obs=10);
run;
proc factor data=food nfactor=3 rotate=varimax out=fscore2;
var X01-X10; : 回転の指定
run; :
proc print data=fscore2;
run;
proc plot data=fscore2;
plot factor1*factor2/vref=0.0 href=0.0;
plot factor2*factor3/vref=0.0 href=0.0;
plot factor3*factor1/vref=0.0 href=0.0;
run;
SAS システム 6
17:22 Wednesday, July 12, 2006
Rotation Method: Varimax
Orthogonal Transformation Matrix
1 2 3
1 0.65751 0.53576 0.52976
2 -0.73452 0.61238 0.29234
3 0.16779 0.58134 -0.79617
SAS システム 7
17:22 Wednesday, July 12, 2006
Rotation Method: Varimax
Rotated Factor Pattern
FACTOR1 FACTOR2 FACTOR3
X01 0.95480 0.13534 0.08893 M(-15)
X02 0.85209 0.43859 0.13319 M(16-20)
X03 0.45782 0.81121 0.20628 M(21-30)
X04 0.21933 0.90009 0.29393 M(31-40)
X05 -0.02799 0.84163 0.46962 M(41-)
X06 0.91574 0.05827 0.32684 F(-15)
X07 0.81289 0.19001 0.49704 F(16-20)
X08 0.58706 0.31477 0.66894 F(21-30)
X09 0.38662 0.45477 0.76508 F(31-40)
X10 0.18442 0.37804 0.88499 F(41-)
SAS システム 8
17:22 Wednesday, July 12, 2006
Rotation Method: Varimax
Variance explained by each factor
FACTOR1 FACTOR2 FACTOR3
3.923686 2.875550 2.545044
Final Communality Estimates: Total = 9.344279
X01 X02 X03 X04 X05
0.937870 0.936157 0.910210 0.944673 0.929662
X06 X07 X08 X09 X10
0.948805 0.943939 0.891197 0.941637 0.960129
SAS システム 9
17:22 Wednesday, July 12, 2006
Rotation Method: Varimax
Scoring Coefficients Estimated by Regression
Squared Multiple Correlations of the Variables with each Factor
FACTOR1 FACTOR2 FACTOR3
1.000000 1.000000 1.000000
SAS システム 10
17:22 Wednesday, July 12, 2006
Rotation Method: Varimax
Standardized Scoring Coefficients
FACTOR1 FACTOR2 FACTOR3
X01 0.35634 -0.01776 -0.21769 M(-15)
X02 0.28101 0.18221 -0.29369 M(16-20)
X03 0.07475 0.43906 -0.30323 M(21-30)
X04 -0.05062 0.47805 -0.20440 M(31-40)
X05 -0.19046 0.37274 0.04777 M(41-)
X06 0.28720 -0.18091 0.04945 F(-15)
X07 0.19335 -0.16071 0.17125 F(16-20)
X08 0.04957 -0.13707 0.32839 F(21-30)
X09 -0.06623 -0.06897 0.40164 F(31-40)
X10 -0.17252 -0.16424 0.59935 F(41-)
SAS システム 11
17:22 Wednesday, July 12, 2006
OBS X01 X02 X03 X04 X05 X06 X07 X08
1 7.69 7.31 7.47 7.76 7.87 7.51 7.24 7.70
2 6.59 5.56 6.21 6.04 5.81 6.64 6.11 6.53
3 4.55 4.18 4.36 4.25 4.53 4.60 3.66 4.04
4 6.78 6.11 6.30 5.98 5.56 6.37 6.29 5.43
5 6.47 6.24 6.02 5.42 5.88 6.00 5.60 4.60
6 6.96 6.81 6.91 6.48 6.23 7.09 7.27 7.13
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
1 7.91 7.95 0.66848 1.82089 1.58151
2 6.44 6.64 0.16753 -0.19985 1.19223
3 3.68 4.43 -1.03317 -1.44074 -0.47196
4 5.32 5.28 0.63828 0.22675 -0.50040
5 5.40 5.95 0.18212 0.09192 -0.20819
6 6.86 7.36 0.74098 0.36705 1.34820
SAS システム 12
17:22 Wednesday, July 12, 2006
OBS X01 X02 X03 X04 X05 X06 X07 X08
7 6.57 5.70 5.89 5.16 5.30 6.07 5.56 4.50
8 7.32 6.95 6.02 4.98 4.88 6.82 6.40 5.53
9 6.51 6.15 5.51 4.68 4.16 5.17 4.81 4.70
10 6.86 6.05 5.85 6.14 6.75 6.71 5.39 5.42
11 7.04 6.03 6.53 6.02 6.68 6.78 5.91 6.26
12 6.59 6.30 6.29 5.94 6.10 5.93 5.52 5.35
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
7 4.92 5.33 0.32212 -0.32353 -0.54867
8 5.61 5.33 1.29399 -0.70772 -0.34096
9 4.86 3.82 0.58563 -0.74996 -1.38927
10 6.03 6.59 0.02082 0.39858 0.55099
11 5.76 5.95 0.40333 0.58990 0.17654
12 5.45 5.85 0.19777 0.54869 -0.27747
SAS システム 13
17:22 Wednesday, July 12, 2006
OBS X01 X02 X03 X04 X05 X06 X07 X08
13 5.93 4.76 5.09 5.51 5.79 5.49 4.97 4.69
14 7.00 6.31 6.82 6.26 5.26 6.69 6.27 5.94
15 6.63 5.47 5.54 4.88 4.70 5.89 4.64 4.43
16 6.56 6.57 5.74 4.76 4.39 6.56 6.29 5.61
17 5.80 5.44 4.75 4.69 4.65 5.23 4.83 4.66
18 6.39 6.14 6.21 5.48 5.40 6.32 6.19 6.44
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
13 5.30 5.61 -0.59891 -0.44433 0.31937
14 5.78 5.26 0.91545 0.42234 -0.53556
15 4.00 3.98 0.46237 -0.53286 -1.57500
16 5.22 4.72 1.11088 -1.07750 -0.45395
17 4.72 4.98 -0.13938 -1.22229 -0.20671
18 5.49 5.49 0.56235 -0.28372 0.15357
SAS システム 14
17:22 Wednesday, July 12, 2006
OBS X01 X02 X03 X04 X05 X06 X07 X08
19 7.19 6.66 6.58 5.33 5.03 7.13 7.19 6.62
20 5.76 6.63 7.02 7.37 7.27 5.93 5.89 6.70
21 5.74 5.71 5.93 6.12 6.24 5.42 5.69 6.10
22 5.52 5.28 5.17 4.69 4.87 4.86 4.66 4.10
23 4.89 4.75 5.02 5.14 4.65 4.96 4.17 3.89
24 6.46 6.88 6.93 6.74 6.52 6.14 6.64 5.81
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
19 5.78 5.23 1.42714 -0.49423 -0.05168
20 6.82 6.97 -0.35623 1.77580 0.83460
21 6.25 6.45 -0.47556 0.23363 0.99794
22 4.62 4.10 -0.26665 -0.65259 -0.96309
23 4.61 4.01 -0.63574 -0.58237 -0.93949
24 6.14 6.59 0.33341 1.19569 0.15960
SAS システム 15
17:22 Wednesday, July 12, 2006
OBS X01 X02 X03 X04 X05 X06 X07 X08
25 6.42 6.79 7.26 6.68 6.48 6.32 5.85 5.14
26 5.89 6.51 6.46 6.31 5.76 5.54 4.38 4.51
27 4.16 4.73 5.75 5.79 5.29 3.35 4.16 4.33
28 5.99 6.10 5.84 5.49 4.82 5.04 4.44 4.09
29 6.97 5.84 5.47 4.58 4.75 6.71 5.90 5.08
30 7.15 6.76 6.56 5.73 5.13 6.99 6.27 5.75
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
25 6.21 5.55 0.37449 1.61803 -0.74503
26 5.75 5.11 -0.09504 1.13524 -1.07720
27 5.49 4.72 -1.46393 0.43161 -0.39411
28 5.01 4.31 0.06458 0.18701 -1.46831
29 4.87 5.01 0.86305 -1.21930 -0.35051
30 5.58 4.98 1.22856 0.06522 -0.75458
≪略≫
SAS システム 25
17:22 Wednesday, July 12, 2006
OBS X01 X02 X03 X04 X05 X06 X07 X08
85 6.96 5.61 4.34 4.28 4.15 6.46 5.70 5.31
86 5.71 5.58 5.46 5.10 5.57 5.46 5.94 5.19
87 5.30 5.88 5.35 5.24 5.68 5.17 5.91 5.06
88 7.09 6.39 5.60 6.18 5.81 7.12 6.69 5.96
89 6.93 6.73 5.60 5.63 6.13 7.13 6.66 6.42
90 7.46 6.19 5.42 4.70 3.68 7.33 6.73 5.58
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
85 4.77 4.19 0.89484 -2.11006 -0.27929
86 5.78 6.23 -0.28762 -0.71826 0.87305
87 5.56 6.10 -0.40623 -0.50420 0.66559
88 6.28 6.60 0.66657 -0.37147 0.91228
89 6.44 6.50 0.69692 -0.51150 1.12494
90 4.18 3.39 1.90587 -1.55808 -1.44320
SAS システム 26
17:22 Wednesday, July 12, 2006
OBS X01 X02 X03 X04 X05 X06 X07 X08
91 6.38 5.28 5.07 3.96 4.25 6.28 5.21 4.65
92 7.41 6.97 5.91 4.96 4.86 7.19 6.72 5.98
93 7.77 6.47 5.71 5.26 4.91 7.72 7.03 6.42
94 7.96 7.13 6.36 6.18 5.71 7.92 7.59 6.87
95 7.62 6.48 5.75 4.69 4.65 7.82 7.17 6.31
96 8.44 7.52 6.82 6.88 6.05 8.48 8.33 7.25
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
91 4.49 4.64 0.50096 -1.77073 -0.41813
92 5.53 5.52 1.45131 -0.95522 -0.05731
93 5.52 5.46 1.57106 -1.13765 0.18885
94 6.77 6.43 1.56707 -0.24567 0.79587
95 5.53 5.58 1.64304 -1.55742 0.37033
96 6.83 6.55 1.98060 0.32279 0.62116
SAS システム 27
17:22 Wednesday, July 12, 2006
OBS X01 X02 X03 X04 X05 X06 X07 X08
97 7.81 7.31 6.93 7.42 6.60 8.10 7.56 7.79
98 8.29 7.45 7.00 6.76 6.69 8.14 7.09 6.83
99 7.20 6.42 6.23 5.92 5.91 6.98 6.44 6.04
100 7.62 7.33 6.91 6.90 6.47 7.33 6.69 7.23
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
97 7.82 7.67 1.18227 0.72902 1.67725
98 6.83 7.13 1.41828 0.79855 0.65451
99 6.14 6.02 0.78541 0.01100 0.33576
100 6.79 6.70 1.06526 0.90338 0.58077
SAS システム 28
17:22 Wednesday, July 12, 2006
プロット : FACTOR1*FACTOR2. 凡例: A = 1 OBS, B = 2 OBS, ...
2 + A | A
| A AA A A | A A
FACTOR1 | A AA |A A A A A
| A B AA AB B C A A A A A
| A A A B | A AA A A A
0 +-----------------A-A---------B-+AA-AA--A-AA--------------------
| A B AA AA| A A A A A
| A AA A|A C AA
| A A AA A AA B | A A A
| A A | AA A
-2 + A A A| A
--+---------+---------+---------+---------+---------+---------+-
-3 -2 -1 0 1 2 3
FACTOR2
SAS システム 29
17:22 Wednesday, July 12, 2006
プロット : FACTOR2*FACTOR3. 凡例: A = 1 OBS, B = 2 OBS, ...
FACTOR2 | |
4 + |
| |
| A A |
2 + A | A A
| A AA A | AAA A A A
| A A A A A AAA |ABB BAB A B AA
0 +--------------------------A------B--D--AA+ACB-AAABAB-A---------
| A A AAA A C| BA BA C A A
| A A CA A | A B AB A
-2 + A A AA |
--+---------+---------+---------+---------+---------+---------+-
-4 -3 -2 -1 0 1 2
FACTOR3
SAS システム 30
17:22 Wednesday, July 12, 2006
プロット : FACTOR3*FACTOR1. 凡例: A = 1 OBS, B = 2 OBS, ...
FACTOR3 | |
2.5 + |
| A B |A BA A
| A BABA A C ABBAA AAA AB A A A A
0.0 +-------------A-----BA-A-AAA---A--A-A-+-BAAC-AABAA-A--AC-AA-----
| A AA A A A B B| B A ABBB A AA
| A A |A AA A
-2.5 + A A | A
| A |
| |
-5.0 + |
--+-----------+-----------+-----------+-----------+-----------+-
-3 -2 -1 0 1 2
FACTOR1
/* Lesson 13-4 */
/* File Name = les1304.sas 07/13/06 */
data hobby;
infile 'syumi.dat';
input code $ X1-X6;
label X1='M(-29)'
X2='M(30-49)'
X3='M(50-)'
X4='F(-29)'
X5='F(30-49)'
X6='F(50-)';
proc print data=hobby(obs=10);
run;
proc factor data=hobby nfactor=2 out=fscore;
var X1-X6;
run;
proc plot data=fscore; : 回転前
plot factor1*factor2=code/vref=0.0 href=0.0; : コード化した記号
run; :
proc factor data=hobby nfactor=2 rotate=varimax out=fscore2;
var X1-X6;
run;
proc plot data=fscore2; : 回転後
plot factor1*factor2=code/vref=0.0 href=0.0; : コード化した記号
run; :
SAS システム 1
17:22 Wednesday, July 12, 2006
OBS CODE X1 X2 X3 X4 X5 X6
1 A 4.00 4.25 3.83 4.50 4.67 4.00
2 B 4.17 3.89 4.00 4.50 4.17 3.75
3 C 3.83 3.44 2.83 3.57 3.17 1.50
4 D 2.83 4.22 3.83 3.71 3.00 2.25
5 E 4.17 4.11 3.83 3.57 4.00 3.75
6 F 2.33 3.56 3.33 2.93 2.83 2.75
7 G 1.83 2.44 2.33 3.71 3.83 3.75
8 H 2.50 1.89 2.00 4.21 3.17 3.75
9 I 2.00 1.44 2.00 4.07 3.33 3.50
10 J 4.00 3.33 3.33 3.00 3.17 2.25
SAS システム 2
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 6 Average = 1
1 2 3
Eigenvalue 2.7435 1.7477 0.7451
Difference 0.9958 1.0027 0.3571
Proportion 0.4573 0.2913 0.1242
Cumulative 0.4573 0.7485 0.8727
4 5 6
Eigenvalue 0.3879 0.2263 0.1495
Difference 0.1616 0.0768
Proportion 0.0647 0.0377 0.0249
Cumulative 0.9374 0.9751 1.0000
SAS システム 3
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
2 factors will be retained by the NFACTOR criterion.
Factor Pattern
FACTOR1 FACTOR2
X1 0.52708 0.63297 M(-29)
X2 0.59628 0.64623 M(30-49)
X3 0.64192 0.47370 M(50-)
X4 0.82757 -0.35514 F(-29)
X5 0.79607 -0.43033 F(30-49)
X6 0.61604 -0.62750 F(50-)
SAS システム 4
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
Variance explained by each factor
FACTOR1 FACTOR2
2.743514 1.747721
Final Communality Estimates: Total = 4.491236
X1 X2 X3 X4 X5 X6
0.678467 0.773166 0.636447 0.810993 0.818906 0.773257
SAS システム 5
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
Scoring Coefficients Estimated by Regression
Squared Multiple Correlations of the Variables with each Factor
FACTOR1 FACTOR2
1.000000 1.000000
SAS システム 6
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
Standardized Scoring Coefficients
FACTOR1 FACTOR2
X1 0.19212 0.36217 M(-29)
X2 0.21734 0.36976 M(30-49)
X3 0.23398 0.27104 M(50-)
X4 0.30164 -0.20320 F(-29)
X5 0.29016 -0.24622 F(30-49)
X6 0.22454 -0.35904 F(50-)
SAS システム 7
17:22 Wednesday, July 12, 2006
プロット : FACTOR1*FACTOR2. 使用するプロット文字: CODE の値.
(NOTE: 1 オブザベーションを表示していません.)
2 + A B
| | Z E
FACTOR1 | R |
| |
| 3 Q M | DL O
0 +--------------HG------------S-----2--+--F-------C--------------
| I K P | V N
| | U W
| 1|Y
| T X
-2 + 4 |
--+-----------+-----------+-----------+-----------+-----------+-
-3 -2 -1 0 1 2
FACTOR2
SAS システム 8
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 6 Average = 1
1 2 3
Eigenvalue 2.7435 1.7477 0.7451
Difference 0.9958 1.0027 0.3571
Proportion 0.4573 0.2913 0.1242
Cumulative 0.4573 0.7485 0.8727
4 5 6
Eigenvalue 0.3879 0.2263 0.1495
Difference 0.1616 0.0768
Proportion 0.0647 0.0377 0.0249
Cumulative 0.9374 0.9751 1.0000
SAS システム 9
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
2 factors will be retained by the NFACTOR criterion.
Factor Pattern
FACTOR1 FACTOR2
X1 0.52708 0.63297 M(-29)
X2 0.59628 0.64623 M(30-49)
X3 0.64192 0.47370 M(50-)
X4 0.82757 -0.35514 F(-29)
X5 0.79607 -0.43033 F(30-49)
X6 0.61604 -0.62750 F(50-)
SAS システム 10
17:22 Wednesday, July 12, 2006
Initial Factor Method: Principal Components
Variance explained by each factor
FACTOR1 FACTOR2
2.743514 1.747721
Final Communality Estimates: Total = 4.491236
X1 X2 X3 X4 X5 X6
0.678467 0.773166 0.636447 0.810993 0.818906 0.773257
SAS システム 11
17:22 Wednesday, July 12, 2006
Rotation Method: Varimax
Orthogonal Transformation Matrix
1 2
1 0.77751 0.62886
2 -0.62886 0.77751
SAS システム 12
17:22 Wednesday, July 12, 2006
Rotation Method: Varimax
Rotated Factor Pattern
FACTOR1 FACTOR2
X1 0.01176 0.82361 M(-29)
X2 0.05723 0.87743 M(30-49)
X3 0.20121 0.77199 M(50-)
X4 0.86678 0.24430 F(-29)
X5 0.88957 0.16603 F(30-49)
X6 0.87359 -0.10049 F(50-)
Variance explained by each factor
FACTOR1 FACTOR2
2.349707 2.141529
SAS システム 13
17:22 Wednesday, July 12, 2006
Rotation Method: Varimax
Final Communality Estimates: Total = 4.491236
X1 X2 X3 X4 X5 X6
0.678467 0.773166 0.636447 0.810993 0.818906 0.773257
Scoring Coefficients Estimated by Regression
Squared Multiple Correlations of the Variables with each Factor
FACTOR1 FACTOR2
1.000000 1.000000
SAS システム 14
17:22 Wednesday, July 12, 2006
Rotation Method: Varimax
Standardized Scoring Coefficients
FACTOR1 FACTOR2
X1 -0.07838 0.40241 M(-29)
X2 -0.06354 0.42417 M(30-49)
X3 0.01147 0.35788 M(50-)
X4 0.36232 0.03170 F(-29)
X5 0.38045 -0.00897 F(30-49)
X6 0.40037 -0.13795 F(50-)
SAS システム 15
17:22 Wednesday, July 12, 2006
プロット : FACTOR1*FACTOR2. 使用するプロット文字: CODE の値.
2 + |
| | A
FACTOR1 | I H G 3 | R ZB
| Q | E
| K S |M
0 +---------------------P-2--+------------D-------------
| |F CJ L O
| Y | V N
| 4 1 T | U
| X | W
-2 + |
---+-----------+-----------+-----------+-----------+--
-2 -1 0 1 2
FACTOR2
[注意] データによっては解釈が困難なことも有り得る。
また、自分の思い付かない結果を含んでいることもある。
なお、今まで紹介していた私のメールアドレスは実は講義用のものであった。 今後、もし統計に関して何か疑問に出会い、私に連絡・相談してみたいと思った時は、 以下のアドレスを使ってください。 なお、後期は水曜日3限に同様の講義を持っていますので、 その前後に質問していただいてもかまいません。
皆さんの期待に応えられたか心許無い部分もありますが、半年間ご苦労様でした。