/* Lesson 09-1 */ /* File Name = les0901.sas 06/22/06 */ data gakusei; infile 'all06ae.prn' firstobs=2; input sex $ shintyou taijyuu kyoui jitaku $ kodukai carryer $ tsuuwa; if sex^='M' & sex^='F' then delete; : 性別不明は除外する proc print data=gakusei(obs=5); run; proc sort data=gakusei; by sex; run; proc univariate data=gakusei plot; var shintyou taijyuu kyoui kodukai; by sex; run;
SAS システム 8 23:23 Tuesday, June 13, 2006 -------------------------------- SEX=F --------------------------------- Univariate Procedure Variable=SHINTYOU Normal Probability Plot 172.5+ +*++* | ********+*+* | **********+ | **********+ | ********+ 147.5+*++*+*++** +----+----+----+----+----+----+----+----+----+----+ -2 -1 0 +1 +2 SAS システム 15 23:23 Tuesday, June 13, 2006 -------------------------------- SEX=F --------------------------------- Univariate Procedure Variable=TAIJYUU Normal Probability Plot 57.5+ *****+*+++* | **********+*+ 47.5+ **********++ | ****+**+*++ 37.5++*+++*+ +----+----+----+----+----+----+----+----+----+----+ -2 -1 0 +1 +2 SAS システム 22 23:23 Tuesday, June 13, 2006 -------------------------------- SEX=F --------------------------------- Univariate Procedure Variable=KYOUI Normal Probability Plot 92.5+ ++++*+++ | **********+*+*+++* 82.5+ *******+*+**+++++ | ++*++**+*++++ 72.5++++*+ +----+----+----+----+----+----+----+----+----+----+ -2 -1 0 +1 +2 SAS システム 29 23:23 Tuesday, June 13, 2006 -------------------------------- SEX=F --------------------------------- Univariate Procedure Variable=KODUKAI Normal Probability Plot 325000+ * | | * 175000+ ** * +++ | *****++++++ | +********** 25000+* * * ******************** +----+----+----+----+----+----+----+----+----+----+ -2 -1 0 +1 +2 SAS システム 36 23:23 Tuesday, June 13, 2006 -------------------------------- SEX=M --------------------------------- Univariate Procedure Variable=SHINTYOU Normal Probability Plot 187.5+ +* | ******+**++ | *********++ 172.5+ ***********+ | *********+ | *+*******+ 157.5+*++ +----+----+----+----+----+----+----+----+----+----+ -2 -1 0 +1 +2 SAS システム 43 23:23 Tuesday, June 13, 2006 -------------------------------- SEX=M --------------------------------- Univariate Procedure Variable=TAIJYUU Normal Probability Plot 105+ * | * * | ** +++ 75+ *********+*++ | *************** | *****************+ 45+*+++*+++++ +----+----+----+----+----+----+----+----+----+----+ -2 -1 0 +1 +2 SAS システム 50 23:23 Tuesday, June 13, 2006 -------------------------------- SEX=M --------------------------------- Univariate Procedure Variable=KYOUI Normal Probability Plot 115+ * * | ***+*+++++++ | ***********+*+ 85+ *************++ | ++*+*+**++++ |+++ 55+ * +----+----+----+----+----+----+----+----+----+----+ -2 -1 0 +1 +2 SAS システム 57 23:23 Tuesday, June 13, 2006 -------------------------------- SEX=M --------------------------------- Univariate Procedure Variable=KODUKAI Normal Probability Plot 325000+ * | | * 175000+ ****** *+*++ | ******++++++ | ++*******+ 25000+*** ************************* +----+----+----+----+----+----+----+----+----+----+ -2 -1 0 +1 +2
/* Lesson 09-2 */ /* File Name = les0902.sas 06/22/06 */ data gakusei; infile 'all06ae.prn' firstobs=2; input sex $ shintyou taijyuu kyoui jitaku $ kodukai carryer $ tsuuwa; if sex^='M' & sex^='F' then delete; proc print data=gakusei(obs=10); run; proc ttest data=gakusei; : t検定 class sex; : 分類したい特性変数の指定 var shintyou taijyuu kyoui kodukai; : 比較したい変量名 run; :
SAS システム 2 23:23 Tuesday, June 13, 2006 TTEST PROCEDURE Variable: SHINTYOU SEX N Mean Std Dev Std Error ----------------------------------------------------------------------- F 110 159.12909091 5.39463453 0.51435822 M 228 172.20350877 5.41497239 0.35861531 Variances T DF Prob>|T| --------------------------------------- Unequal -20.8513 216.2 0.0001 Equal -20.8238 336.0 0.0000 For H0: Variances are equal, F' = 1.01 DF = (227,109) Prob>F' = 0.9790 SAS システム 3 23:23 Tuesday, June 13, 2006 TTEST PROCEDURE Variable: TAIJYUU SEX N Mean Std Dev Std Error ----------------------------------------------------------------------- F 78 48.62820513 4.67640936 0.52949909 M 228 62.16140351 7.89955677 0.52316093 Variances T DF Prob>|T| --------------------------------------- Unequal -18.1811 227.3 0.0001 Equal -14.2885 304.0 0.0000 For H0: Variances are equal, F' = 2.85 DF = (227,77) Prob>F' = 0.0000 SAS システム 4 23:23 Tuesday, June 13, 2006 TTEST PROCEDURE Variable: KYOUI SEX N Mean Std Dev Std Error ----------------------------------------------------------------------- F 42 82.95238095 3.93825751 0.60768633 M 69 88.60869565 8.33881320 1.00387514 Variances T DF Prob>|T| --------------------------------------- Unequal -4.8201 103.8 0.0001 Equal -4.1198 109.0 0.0001 For H0: Variances are equal, F' = 4.48 DF = (68,41) Prob>F' = 0.0000 SAS システム 5 23:23 Tuesday, June 13, 2006 TTEST PROCEDURE Variable: KODUKAI SEX N Mean Std Dev Std Error ----------------------------------------------------------------------- F 107 48579.43925234 45373.45815940 4386.41776369 M 218 47220.18348624 49351.52901010 3342.50731003 Variances T DF Prob>|T| --------------------------------------- Unequal 0.2465 227.4 0.8055 Equal 0.2395 323.0 0.8109 For H0: Variances are equal, F' = 1.18 DF = (217,106) Prob>F' = 0.3310
/* Lesson 09-3 */ /* File Name = les0903.sas 06/22/06 */ data gakusei; infile 'all06ae.prn' firstobs=2; input sex $ shintyou taijyuu kyoui jitaku $ kodukai carryer $ tsuuwa; if sex^='M' & sex^='F' then delete; proc print data=gakusei(obs=10); run; proc npar1way data=gakusei wilcoxon; : wilcoxon 検定 class sex; : 分類したい特性変数の指定 var shintyou taijyuu kyoui kodukai; : 比較したい変量名 run; :
SAS システム 2 23:23 Tuesday, June 13, 2006 N P A R 1 W A Y P R O C E D U R E Wilcoxon Scores (Rank Sums) for Variable SHINTYOU Classified by Variable SEX Sum of Expected Std Dev Mean SEX N Scores Under H0 Under H0 Score F 110 7137.0 18645.0 841.174446 64.881818 M 228 50154.0 38646.0 841.174446 219.973684 Average Scores Were Used for Ties Wilcoxon 2-Sample Test (Normal Approximation) (with Continuity Correction of .5) SAS システム 3 23:23 Tuesday, June 13, 2006 N P A R 1 W A Y P R O C E D U R E S = 7137.00 Z = -13.6803 Prob > |Z| = 0.0001 T-Test Approx. Significance = 0.0001 Kruskal-Wallis Test (Chi-Square Approximation) CHISQ = 187.17 DF = 1 Prob > CHISQ = 0.0001 SAS システム 4 23:23 Tuesday, June 13, 2006 N P A R 1 W A Y P R O C E D U R E Wilcoxon Scores (Rank Sums) for Variable TAIJYUU Classified by Variable SEX Sum of Expected Std Dev Mean SEX N Scores Under H0 Under H0 Score F 78 3880.5000 11973.0 673.901338 49.750000 M 228 43090.5000 34998.0 673.901338 188.993421 Average Scores Were Used for Ties Wilcoxon 2-Sample Test (Normal Approximation) (with Continuity Correction of .5) SAS システム 5 23:23 Tuesday, June 13, 2006 N P A R 1 W A Y P R O C E D U R E S = 3880.50 Z = -12.0077 Prob > |Z| = 0.0001 T-Test Approx. Significance = 0.0001 Kruskal-Wallis Test (Chi-Square Approximation) CHISQ = 144.20 DF = 1 Prob > CHISQ = 0.0001 SAS システム 6 23:23 Tuesday, June 13, 2006 N P A R 1 W A Y P R O C E D U R E Wilcoxon Scores (Rank Sums) for Variable KYOUI Classified by Variable SEX Sum of Expected Std Dev Mean SEX N Scores Under H0 Under H0 Score F 42 1544.0 2352.0 163.610894 36.7619048 M 69 4672.0 3864.0 163.610894 67.7101449 Average Scores Were Used for Ties Wilcoxon 2-Sample Test (Normal Approximation) (with Continuity Correction of .5) SAS システム 7 23:23 Tuesday, June 13, 2006 N P A R 1 W A Y P R O C E D U R E S = 1544.00 Z = -4.93549 Prob > |Z| = 0.0001 T-Test Approx. Significance = 0.0001 Kruskal-Wallis Test (Chi-Square Approximation) CHISQ = 24.389 DF = 1 Prob > CHISQ = 0.0001 SAS システム 8 23:23 Tuesday, June 13, 2006 N P A R 1 W A Y P R O C E D U R E Wilcoxon Scores (Rank Sums) for Variable KODUKAI Classified by Variable SEX Sum of Expected Std Dev Mean SEX N Scores Under H0 Under H0 Score F 107 18462.5000 17441.0 792.073100 172.546729 M 218 34512.5000 35534.0 792.073100 158.314220 Average Scores Were Used for Ties Wilcoxon 2-Sample Test (Normal Approximation) (with Continuity Correction of .5) SAS システム 9 23:23 Tuesday, June 13, 2006 N P A R 1 W A Y P R O C E D U R E S = 18462.5 Z = 1.28902 Prob > |Z| = 0.1974 T-Test Approx. Significance = 0.1983 Kruskal-Wallis Test (Chi-Square Approximation) CHISQ = 1.6632 DF = 1 Prob > CHISQ = 0.1972
/* Lesson 09-4 */ /* File Name = les0904.sas 06/22/06 */ data pair; : input x y @@; : @@ は 1行に複数のデータがあることを示す dif=x-y; : 差(difference)を計算する cards; : データをプログラム内に記述する 3.51 3.39 3.07 3.39 3.29 3.20 3.03 3.11 : x1,y1, x2,y2, x3,y3, x4,y4, 3.38 3.17 3.30 3.09 3.15 3.17 3.25 3.09 : x5,y5, x6,y6, x7,y7, x8,y8 ; : : proc print data=pair; : run; : proc univariate data=pair plot; : var dif; : 差について run; :
SAS システム 1 23:23 Tuesday, June 13, 2006 OBS X Y DIF 1 3.51 3.39 0.12 2 3.07 3.39 -0.32 3 3.29 3.20 0.09 4 3.03 3.11 -0.08 5 3.38 3.17 0.21 6 3.30 3.09 0.21 7 3.15 3.17 -0.02 8 3.25 3.09 0.16 SAS システム 2 23:23 Tuesday, June 13, 2006 Univariate Procedure Variable=DIF Moments N 8 Sum Wgts 8 Mean 0.04625 Sum 0.37 Std Dev 0.180629 Variance 0.032627 Skewness -1.31523 Kurtosis 1.511099 USS 0.2455 CSS 0.228388 CV 390.5489 Std Mean 0.063862 T:Mean=0 0.724218 Pr>|T| 0.4924 Num ^= 0 8 Num > 0 5 M(Sign) 1 Pr>=|M| 0.7266 Sgn Rank 7 Pr>=|S| 0.3594 SAS システム 5 23:23 Tuesday, June 13, 2006 Univariate Procedure Variable=DIF Stem Leaf # Boxplot 2 11 2 | 1 26 2 +-----+ 0 9 1 | + | -0 82 2 +-----+ -1 | -2 | -3 2 1 | ----+----+----+----+ Multiply Stem.Leaf by 10**-1 SAS システム 6 23:23 Tuesday, June 13, 2006 Univariate Procedure Variable=DIF Normal Probability Plot 0.25+ *++++* | *++*+++ | *++++ -0.05+ *+++*++ | +++++ | ++++++ -0.35+ +++++ * +----+----+----+----+----+----+----+----+----+----+ -2 -1 0 +1 +2
data seito06; infile 'seito.prn'; input id $ sex $ kesseki $ univ $ koku $ suu1 $ suu2 $ tireki $ koumin $ rika $; if sex^='M' then delete; /* male only */ if kesseki^='0' then delete; /* syusseki-sya only */ area="不明"; if univ="早稲田大学" then area="東日本"; if univ="慶応大学" then area="東日本"; if univ="関西大学" then area="西日本"; if univ="同志社大学" then area="西日本"; if tireki="世界史-0" then tireki="世界史"; if tireki="世界史-2" then tireki="世界史"; if tireki="日本史-2" then tireki="日本史"; if tireki="日本史-3" then tireki="日本史"; ...
[例4] 複数の処理をさせたい場合 : do 〜 end で囲む
if tireki="世界史-0" then do; tireki="世界史"; koumin=.; end; ...
[比較演算子]
[論理演算子]
data gakusei; infile 'all06ae.prn' firstobs=2; input sex $ shintyou taijyuu kyoui jitaku $ kodukai carryer $ tsuuwa; dekasa=shintyou+taijyuu+kyoui; : 変量間の加減乗除 kyo_2=kyoui**2; : 二乗 kyo_sr=sqrt(kyoui); : ルート
[算術演算子]
[数値関数]
data randnum; do i=1 to 200; x=rannor(12345); output; end; run;プログラム例 : les0905.sas、 出力結果 : les0905.lst
[乱数関数] : 乱数を生成する関数