/* Lesson 11-1 */
/* File Name = les1101.sas 06/30/05 */
data gakusei;
infile 'all05a.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
if sex^='M' & sex^='F' then delete;
proc print data=gakusei(obs=10);
run;
proc plot data=gakusei; : 散布図を描く
plot shintyou*taijyuu; : 散布図の変量を指定(縦軸、横軸の順)
plot taijyuu*shintyou; :
run: :
proc corr data=gakusei; : 相関係数(相関行列)を計算
run: :
SAS システム 2
15:55 Wednesday, June 29, 2005
プロット : SHINTYOU*TAIJYUU. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 42 オブザベーションが欠損値です.)
SHINTYOU |
200 +
|
| B A
180 + A BDCFDDBEA B B A A A
| BAFDKHTOHHCFECB BA
| AEAGIIFEBBCEAA AA A A
160 + ADCFDIDDBABB
| A ECAEDDA A A
| A BAA
140 +
---+-----------+-----------+-----------+-----------+--
20 40 60 80 100
TAIJYUU
SAS システム 3
15:55 Wednesday, June 29, 2005
プロット : TAIJYUU*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 42 オブザベーションが欠損値です.)
100 + B
| A A
TAIJYUU | A A A A B A A
| A B CBDDC DCGAD CCF B AA
| A AA E B CBDBG JBQHLBJFFDC CBDCB A
50 + AAA CACEC DCI G EBCGF DAABB BB
| A A B D BA BA
|
|
|
0 +
--+-----------+-----------+-----------+-----------+-----------+-
140 150 160 170 180 190
SHINTYOU
SAS システム 4
15:55 Wednesday, June 29, 2005
Correlation Analysis
5 'VAR' Variables: SHINTYOU TAIJYUU KYOUI KODUKAI TSUUWA
Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum
SHINTYOU 312 167.7 8.2164 52318.7 145.0 186.0
TAIJYUU 281 58.5587 9.3804 16455.0 35.0000 100.0
KYOUI 104 86.4904 7.6425 8995.0 56.0000 112.0
KODUKAI 300 48471.7 48971.1 14541500 0 300000
TSUUWA 103 7073.3 4622.0 728548 200.0 30000.0
SAS システム 5
15:55 Wednesday, June 29, 2005
Correlation Analysis
Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0
/ Number of Observations
SHINTYOU TAIJYUU KYOUI KODUKAI TSUUWA
SHINTYOU 1.00000 0.71196 0.37528 0.04822 0.09182
0.0 0.0001 0.0001 0.4117 0.3636
312 281 104 292 100
TAIJYUU 0.71196 1.00000 0.65722 -0.00876 0.05141
0.0001 0.0 0.0001 0.8873 0.6265
281 281 104 264 92
KYOUI 0.37528 0.65722 1.00000 -0.08511 0.03612
0.0001 0.0001 0.0 0.3998 0.8552
104 104 104 100 28
KODUKAI 0.04822 -0.00876 -0.08511 1.00000 0.14982
0.4117 0.8873 0.3998 0.0 0.1368
292 264 100 300 100
TSUUWA 0.09182 0.05141 0.03612 0.14982 1.00000
0.3636 0.6265 0.8552 0.1368 0.0
100 92 28 100 103
[注意] 相関行列は細切れに表示されるので、 不要部分を削除することによって整形しレポート等に使うこと。
[式(a)]
1次元正規分布 N(0,1)
[式(b)]
2次元正規分布 N({0,0},{1,1}, ρ=0.0)
[式(c)]
2次元正規分布 N({0,0},{1,1}, ρ=0.7)
[式(d)]
2次元正規分布 N({0,0},{1,1}, ρ=0.7)、y=1 で切り出し
[式(e)]
2次元正規分布 N({0,0},{1,1}, ρ=0.7)、x+y=2 で切り出し
/* Lesson 11-2 */
/* File Name = les1102.sas 06/30/05 */
data gakusei;
infile 'all05a.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
if sex^='M' & sex^='F' then delete;
proc print data=gakusei(obs=10);
run;
proc reg data=gakusei; : 回帰分析
model taijyuu=shintyou; : 変量を指定
output out=outreg1 predicted=pred1 residual=resid1; : 結果項目の保存
run; :
:
proc print data=outreg1(obs=15); : 表示してみる
run; :
:
proc plot data=outreg1; : 散布図を描く
plot taijyuu*shintyou/vaxis=20 to 100 by 20; : 体重と身長(縦軸指定)
plot pred1*taijyuu; : 予測値と観測値
plot resid1*pred1 /vref=0; : 残差と予測値(残差解析)(水平軸指定)
plot resid1*shintyou/vref=0; : 残差と説明変数(残差解析)
plot resid1*taijyuu /vref=0; : 残差と目的変数(残差解析)
run; :
:
proc univariate data=outreg1 plot normal; : 残差を正規プロットして確かめる
var resid1; :
run; :
[補足] proc plot
の下に以下の行を追加した方がより正確ではある。
欠損値を含むデータを解析対象から除外する事を指示する命令文である。
「欠損値です」の表示が無くなるだけで、得られる図は同じ(欠損値は描画できないから)。
試しに追加する/しないの両方で実行してみよ。
where shintyou^=. and taijyuu^=.;
SAS システム 2
15:55 Wednesday, June 29, 2005
Model: MODEL1
Dependent Variable: TAIJYUU
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 1 12488.43725 12488.43725 286.788 0.0001
Error 279 12149.30389 43.54589
C Total 280 24637.74114
Root MSE 6.59893 R-square 0.5069
Dep Mean 58.55872 Adj R-sq 0.5051
C.V. 11.26891
SAS システム 3
15:55 Wednesday, June 29, 2005
Parameter Estimates
Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 -79.426466 8.15752248 -9.737 0.0001
SHINTYOU 1 0.819164 0.04837162 16.935 0.0001
SAS システム 4
15:55 Wednesday, June 29, 2005
S
H T K C
I A J O A T R
N I K I D R S P E
T J Y T U R U R S
O S Y Y O A K Y U E I
B E O U U K A E W D D
S X U U I U I R A 1 1
1 F 145.0 38.0 . J 10000 . 39.3524 -1.3524
2 F 146.7 41.0 85 J 10000 Vodafone 6000 40.7450 0.2550
3 F 148.0 42.0 . J 50000 . 41.8099 0.1901
4 F 148.0 43.0 80 J 50000 DoCoMo 4000 41.8099 1.1901
5 F 148.9 . . J 60000 . 42.5471 .
6 F 149.0 45.0 . G 60000 . 42.6290 2.3710
7 F 150.0 46.0 86 40000 . 43.4482 2.5518
8 F 151.0 50.0 . G 60000 J-PHONE . 44.2674 5.7326
9 F 151.7 41.5 80 J 35000 . 44.8408 -3.3408
10 F 152.0 35.0 77 J 60000 DoCoMo 2000 45.0865 -10.0865
11 F 152.0 43.0 . J 20000 au 3500 45.0865 -2.0865
12 F 152.0 44.0 . 45000 DoCoMo 4000 45.0865 -1.0865
13 F 153.0 41.0 . J 125000 No . 45.9057 -4.9057
14 F 153.0 42.0 . G 0 Vodafone 1000 45.9057 -3.9057
15 F 153.0 46.5 87 G 10000 . 45.9057 0.5943
SAS システム 6
15:55 Wednesday, June 29, 2005
プロット : TAIJYUU*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 42 オブザベーションが欠損値です.)
TAIJYUU |
100 + B
| A A
80 + A A A A B A A
| A B CBDDC DCGAD CCF B AA
60 + A AA E B CBDBG JBQHLBJFFDC CBDCB A
| AAA CACEC DCI G EBCGF DAABB BB
40 + A A B D BA BA
|
20 +
|
--+-----------+-----------+-----------+-----------+-----------+-
140 150 160 170 180 190
SHINTYOU
SAS システム 7
15:55 Wednesday, June 29, 2005
プロット : PRED1*TAIJYUU. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 42 オブザベーションが欠損値です.)
80 +
|
PRED1 | A B A
| A BDACFAB F B A A A A
| AABBBBLGDDBHBB A BB
60 + BECLHGGKBIBAADABA A
| AF EHCH CCAAE A
| BBDCEFACAAAA
| BABCDACA A A
| A CABB B A
40 + A BA
---+------------+------------+------------+------------+--
20 40 60 80 100
TAIJYUU
SAS システム 8
15:55 Wednesday, June 29, 2005
プロット : RESID1*PRED1. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 42 オブザベーションが欠損値です.)
|
R 50 +
e |
s | A A
i 25 + A A
d | A B A A AA A
u | A A A B BBBB BBBDDCCBB ABA A A
a 0 +-------------A-ABAA-CCCCECCBJ-EEBECHJBNHIIGIBEBBH-A-AA-----------
l | AA BAAAB BA AGDDACDEBBCE CBBBBA
| A A
-25 +
---+-----------+-----------+-----------+-----------+-----------+--
30 40 50 60 70 80
Predicted Value of TAIJYUU
SAS システム 9
15:55 Wednesday, June 29, 2005
プロット : RESID1*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 42 オブザベーションが欠損値です.)
|
R 50 +
e |
s | A A
i 25 + A A
d | A B A A A A A
u | A A A B B BBB B BBDDC CBB A BA A A
a 0 +--------A-A-BAA-C-DBCEC-CBJ-E-EBECH-JBNFJAIGIBE-BBH-A--AA--------
l | A A BA AAB B A AFE DACDDABBCCB CBBBB A
| A A
-25 +
---+-----------+-----------+-----------+-----------+-----------+--
140 150 160 170 180 190
SHINTYOU
SAS システム 10
15:55 Wednesday, June 29, 2005
プロット : RESID1*TAIJYUU. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 42 オブザベーションが欠損値です.)
|
R 50 +
e |
s | A A
i 25 + A A
d | A BABA A
u | A ABABBAKBCCGAC B A
a 0 +--------------A-DBDEFDMJDQGJSQFLCJ-E---------------------
l | A CABCH CKEHCDFCCA
| A A
-25 +
---+------------+------------+------------+------------+--
20 40 60 80 100
TAIJYUU
SAS システム 11
15:55 Wednesday, June 29, 2005
Univariate Procedure
Variable=RESID1 Residual
Moments
N 281 Sum Wgts 281
Mean 0 Sum 0
Std Dev 6.587137 Variance 43.39037
Skewness 1.485699 Kurtosis 4.475282
USS 12149.3 CSS 12149.3
CV . Std Mean 0.392956
T:Mean=0 0 Pr>|T| 1.0000
Num ^= 0 281 Num > 0 121
M(Sign) -19.5 Pr>=|M| 0.0232
Sgn Rank -2455.5 Pr>=|S| 0.0716
W:Normal 0.913143 Pr<W 0.0001
SAS システム 15
15:55 Wednesday, June 29, 2005
Univariate Procedure
Variable=RESID1 Residual
Histogram # Boxplot
35+* 1 *
.* 4 0
.*** 12 0
.************************** 104 +--+--+
.*************************************** 155 *-----*
-15+** 5 |
----+----+----+----+----+----+----+----
* may represent up to 4 counts
SAS システム 16
15:55 Wednesday, June 29, 2005
Univariate Procedure
Variable=RESID1 Residual
Normal Probability Plot
35+ *
| ** **
| ******++++
| ++**************
| ************************
-15+**+**+++++
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
[注意] 誤差は「説明変量」の軸と垂直に取ることに注意せよ。 誤差は測定時に混入していると考えてモデルが構築されているから。
[注意] 「正規性を乱している者は何でも除外してかまわない」というわけではない。 今回の場合は、元データに戻ったところ、体育会系のずんぐりした者であったため、 普通の大学生とは異なる性質を有していると判断し除外対象とした。 除外する場合にはその根拠を明確にしないと、「恣意的な解析」と言われかねないことに注意せよ。
/* Lesson 11-3 */
/* File Name = les1103.sas 06/30/05 */
data gakusei;
infile 'all05a.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
if sex^='M' & sex^='F' then delete;
if shintyou=. | taijyuu=. then delete; : 欠損値データを除外
proc print data=gakusei(obs=10);
run;
proc corr data=gakusei;
where taijyuu<85; : 対象データを絞る
run;
proc reg data=gakusei;
model taijyuu=shintyou;
where taijyuu<85; : 対象データを絞る
output out=outreg1 predicted=pred1 residual=resid1;
run;
proc print data=outreg1(obs=15);
run;
proc plot data=outreg1;
where taijyuu<85; : 対象データを絞る
plot taijyuu*shintyou;
plot taijyuu*pred1;
plot resid1*(pred1 shintyou taijyuu)/vref=0; : まとめて指定することも可
run;
proc univariate data=outreg1 plot normal;
var resid1;
run;
SAS システム 2
15:55 Wednesday, June 29, 2005
Correlation Analysis
5 'VAR' Variables: SHINTYOU TAIJYUU KYOUI KODUKAI TSUUWA
Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum
SHINTYOU 277 168.3 8.1293 46626.1 145.0 186.0
TAIJYUU 277 58.0560 8.4350 16081.5 35.0000 82.0000
KYOUI 101 86.0297 7.1449 8689.0 56.0000 110.0
KODUKAI 260 49142.3 50778.4 12777000 0 300000
TSUUWA 92 7319.0 4605.3 673348 500.0 30000.0
SAS システム 3
15:55 Wednesday, June 29, 2005
Correlation Analysis
Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0
/ Number of Observations
SHINTYOU TAIJYUU KYOUI KODUKAI TSUUWA
SHINTYOU 1.00000 0.74146 0.33653 0.05755 0.04857
0.0 0.0001 0.0006 0.3554 0.6457
277 277 101 260 92
TAIJYUU 0.74146 1.00000 0.58868 0.01740 0.05141
0.0001 0.0 0.0001 0.7800 0.6265
277 277 101 260 92
KYOUI 0.33653 0.58868 1.00000 -0.07849 0.03612
0.0006 0.0001 0.0 0.4448 0.8552
101 101 101 97 28
KODUKAI 0.05755 0.01740 -0.07849 1.00000 0.20416
0.3554 0.7800 0.4448 0.0 0.0550
260 260 97 260 89
TSUUWA 0.04857 0.05141 0.03612 0.20416 1.00000
0.6457 0.6265 0.8552 0.0550 0.0
92 92 28 89 92
SAS システム 6
15:55 Wednesday, June 29, 2005
Model: MODEL1
Dependent Variable: TAIJYUU
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 1 10795.99934 10795.99934 335.797 0.0001
Error 275 8841.34333 32.15034
C Total 276 19637.34267
Root MSE 5.67013 R-square 0.5498
Dep Mean 58.05596 Adj R-sq 0.5481
C.V. 9.76666
SAS システム 7
15:55 Wednesday, June 29, 2005
Parameter Estimates
Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 -71.444313 7.07515732 -10.098 0.0001
SHINTYOU 1 0.769345 0.04198389 18.325 0.0001
SAS システム 10
15:55 Wednesday, June 29, 2005
プロット : TAIJYUU*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ...
TAIJYUU |
100 +
|
| A
75 + A B AAA B B B BA A
| BB B BBGCCADCGBD BCIAB AA
| A AA E B C CBG JBMHKAIFECC CAABA A
50 + AA CACEB CCG F EBCGF DAABB BB
| A A BA C BA BB A B A
| A
25 +
--+-----------+-----------+-----------+-----------+-----------+-
140 150 160 170 180 190
SHINTYOU
SAS システム 11
15:55 Wednesday, June 29, 2005
プロット : TAIJYUU*PRED1. 凡例: A = 1 OBS, B = 2 OBS, ...
TAIJYUU |
100 +
|
| A
75 + A B AAAB BAABA A
| BBBBBFDCECGBDBLAB AA
| A AA E BC CIHDMHLHGEEACACAA
50 + AA DCEBCBH FEBCMCBABB BB
| A ABA ABBABBA B A
| A
25 +
---+-----------+-----------+-----------+-----------+--
40 50 60 70 80
Predicted Value of TAIJYUU
SAS システム 12
15:55 Wednesday, June 29, 2005
プロット : RESID1*PRED1. 凡例: A = 1 OBS, B = 2 OBS, ...
|
R 40 +
e |
s |
i 20 + A A
d | A AAAAA AB BA A
u | A B B E BBBBABDAFDBDBD B A
a 0 +--A-ABAA-BABCEACBDAEE-EBHFDJEJIGFBEBCH-A-AA--------------
l | AB ABBA E BABAFECBDDDBCBCBCABBBA
| A A B A
-20 +
---+------------+------------+------------+------------+--
40 50 60 70 80
Predicted Value of TAIJYUU
SAS システム 13
15:55 Wednesday, June 29, 2005
プロット : RESID1*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ...
|
R 40 +
e |
s |
i 20 + A A
d | A AAAAA A B B A A
u | A B B E B BBBAB DAGCB DBD AA A
a 0 +--------A-A-BAA-B-BACEA-CBE-E-E-EBH-HBJEJAHGFBE-BCH-A--AA--------
l | A BA BB AAD B ABAFE DADDDABBBCB CABBB A
| A A B A
-20 +
---+-----------+-----------+-----------+-----------+-----------+--
140 150 160 170 180 190
SHINTYOU
SAS システム 14
15:55 Wednesday, June 29, 2005
プロット : RESID1*TAIJYUU. 凡例: A = 1 OBS, B = 2 OBS, ...
|
R 40 +
e |
s |
i 20 + A A
d | A A AA C BC A
u | B A D B AC DCDIBAEAEB AA
a 0 +----------A--AABAADADDFDFCDIEDIBRFJDDFCCD-E----------------------
l | ADAACCCG ABFEEDFCCAFC BA
| A B A A
-20 +
---+---------+---------+---------+---------+---------+---------+--
30 40 50 60 70 80 90
TAIJYUU
SAS システム 15
15:55 Wednesday, June 29, 2005
Univariate Procedure
Variable=RESID1 Residual
Moments
N 277 Sum Wgts 277
Mean 0 Sum 0
Std Dev 5.659846 Variance 32.03385
Skewness 0.722003 Kurtosis 0.805367
USS 8841.343 CSS 8841.343
CV . Std Mean 0.340067
T:Mean=0 0 Pr>|T| 1.0000
Num ^= 0 277 Num > 0 118
M(Sign) -20.5 Pr>=|M| 0.0161
Sgn Rank -1536.5 Pr>=|S| 0.2503
W:Normal 0.963203 Pr<W 0.0001
SAS システム 18
15:55 Wednesday, June 29, 2005
Univariate Procedure
Variable=RESID1 Residual
Histogram # Boxplot
22.5+* 1 0
.* 2 0
.**** 12 0
.************ 34 |
.*********************** 69 +--+--+
.*************************************** 116 *-----*
.************* 38 |
-12.5+** 5 |
----+----+----+----+----+----+----+----
* may represent up to 3 counts
SAS システム 19
15:55 Wednesday, June 29, 2005
Univariate Procedure
Variable=RESID1 Residual
Normal Probability Plot
22.5+ *
| * *
| *******+++
| ********+
| ++********
| *************
| ***********+
-12.5+*+***+++
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
/* Lesson 11-4 */
/* File Name = les1104.sas 06/30/05 */
data gakusei;
infile 'all05a.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
if sex^='M' & sex^='F' then delete;
proc print data=gakusei(obs=10);
run;
proc reg data=gakusei; : 回帰分析
model taijyuu=shintyou kyoui; : 複数変量を指定
output out=outreg1 predicted=pred1 residual=resid1; : 結果項目の保存
run; :
proc print data=outreg1(obs=15);
run;
:
proc plot data=outreg1; : 散布図を描く
where shintyou^=. and taijyuu^=. and kyoui^=.; : 解析に使ったデータのみ
plot taijyuu*shintyou; :
plot taijyuu*kyoui; :
plot taijyuu*pred1; : 観測値と予測値
plot resid1*pred1 /vref=0; : 残差と予測値(残差解析)
plot resid1*shintyou/vref=0; : 残差と説明変量(残差解析)
plot resid1*kyoui /vref=0; : 残差と説明変量(残差解析)
plot resid1*taijyuu /vref=0; : 残差と目的変量(残差解析)
run; :
:
proc univariate data=outreg1 plot normal; : 残差を正規プロットして確かめる
var resid1; :
run; :
SAS システム 2
15:55 Wednesday, June 29, 2005
Model: MODEL1
Dependent Variable: TAIJYUU
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 2 8613.47634 4306.73817 123.577 0.0001
Error 101 3519.92213 34.85071
C Total 103 12133.39846
Root MSE 5.90345 R-square 0.7099
Dep Mean 58.69615 Adj R-sq 0.7042
C.V. 10.05764
SAS システム 3
15:55 Wednesday, June 29, 2005
Parameter Estimates
Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 -112.792941 11.34884743 -9.939 0.0001
SHINTYOU 1 0.699313 0.07108825 9.837 0.0001
KYOUI 1 0.630221 0.08211341 7.675 0.0001
SAS システム 4
15:55 Wednesday, June 29, 2005
S
H T K C
I A J O A T R
N I K I D R S P E
T J Y T U R U R S
O S Y Y O A K Y U E I
B E O U U K A E W D D
S X U U I U I R A 1 1
1 F 145.0 38.0 . J 10000 . . .
2 F 146.7 41.0 85 J 10000 Vodafone 6000 43.3651 -2.36515
3 F 148.0 42.0 . J 50000 . . .
4 F 148.0 43.0 80 J 50000 DoCoMo 4000 41.1231 1.87685
5 F 148.9 . . J 60000 . . .
6 F 149.0 45.0 . G 60000 . . .
7 F 150.0 46.0 86 40000 . 46.3031 -0.30310
8 F 151.0 50.0 . G 60000 J-PHONE . . .
9 F 151.7 41.5 80 J 35000 . 43.7106 -2.21061
10 F 152.0 35.0 77 J 60000 DoCoMo 2000 42.0297 -7.02974
11 F 152.0 43.0 . J 20000 au 3500 . .
12 F 152.0 44.0 . 45000 DoCoMo 4000 . .
13 F 153.0 41.0 . J 125000 No . . .
14 F 153.0 42.0 . G 0 Vodafone 1000 . .
15 F 153.0 46.5 87 G 10000 . 49.0313 -2.53126
SAS システム 6
15:55 Wednesday, June 29, 2005
プロット : TAIJYUU*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ...
100 + A
| A A
TAIJYUU | A A A
| B BABAB AACAA A B A AA
| A A B A B BBA BAFBC ABA AABBA
50 + A A ADB BBE C BBACB A
| A A B A A
|
|
|
0 +
--+-----------+-----------+-----------+-----------+-----------+-
140 150 160 170 180 190
SHINTYOU
SAS システム 7
15:55 Wednesday, June 29, 2005
プロット : TAIJYUU*KYOUI. 凡例: A = 1 OBS, B = 2 OBS, ...
100 + A
| A A
TAIJYUU | AA A
| A A C BBF BABA A A
| A A C C AAE FBJ AAA A
50 + A A AA C ICHBBA
| A A B B
|
|
|
0 +
---+-------+-------+-------+-------+-------+-------+-------+--
50 60 70 80 90 100 110 120
KYOUI
SAS システム 8
15:55 Wednesday, June 29, 2005
プロット : TAIJYUU*PRED1. 凡例: A = 1 OBS, B = 2 OBS, ...
100 + A
| A A
TAIJYUU | A A A
| A B ADAB BA ABABAA A
| A B BAAAAAA CBAADEBABAA AB
50 + B CABBBAEC CDB B
| AAAB A
|
|
|
0 +
--+-----------+-----------+-----------+-----------+-----------+-
40 50 60 70 80 90
Predicted Value of TAIJYUU
SAS システム 9
15:55 Wednesday, June 29, 2005
プロット : RESID1*PRED1. 凡例: A = 1 OBS, B = 2 OBS, ...
|
R 40 +
e |
s | A
i 20 + A
d | A A A A
u | A B BAAA A B CAA A A A
a 0 +---A-AB---CABBB-DB-AABAA-BBAACEB-AA--B-BAA---------A-------------
l | A AAAA BCA B A AA A BAAAAC A
| A
-20 +
---+-----------+-----------+-----------+-----------+-----------+--
40 50 60 70 80 90
Predicted Value of TAIJYUU
SAS システム 10
15:55 Wednesday, June 29, 2005
プロット : RESID1*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ...
|
R 40 +
e |
s | A
i 20 + A
d | A A A A
u | B B A BBBAB ABAA
a 0 +----------A-A-A-A-AAACB-BAD-B-BABBC-A-CAB-BAC-A-C-A-A--A---------
l | A A AA B AAACB A BAA A ACAA A
| A
-20 +
---+-----------+-----------+-----------+-----------+-----------+--
140 150 160 170 180 190
SHINTYOU
SAS システム 11
15:55 Wednesday, June 29, 2005
プロット : RESID1*KYOUI. 凡例: A = 1 OBS, B = 2 OBS, ...
|
R 40 +
e |
s | A
i 20 + A
d | A A A A
u | B A A B A C ABD B
a 0 +-----------------------B-A-E-CCDKCBAG-A-BC---B--------A----------
l | AA B BA FACBD A B A
| A
-20 +
-+--------+--------+--------+--------+--------+--------+--------+-
50 60 70 80 90 100 110 120
KYOUI
SAS システム 12
15:55 Wednesday, June 29, 2005
プロット : RESID1*TAIJYUU. 凡例: A = 1 OBS, B = 2 OBS, ...
|
R 40 +
e |
s | A
i 20 + A
d | AA A A
u | A BAAAB B BBBA AA
a 0 +----------------BABCCBFCAB-CFDBCAA-E----A----------------
l | A A BDABB B ADAAD A
| A
-20 +
---+------------+------------+------------+------------+--
20 40 60 80 100
TAIJYUU
SAS システム 17
15:55 Wednesday, June 29, 2005
Univariate Procedure
Variable=RESID1 Residual
Stem Leaf # Boxplot
2 4 1 *
1 8 1 0
1 01224 5 0
0 5567777788888 13 |
0 00011111122223334444 20 +--+--+
-0 4444444333333333322222222222222211111110000 43 *-----*
-0 99877777666666555555 20 |
-1 0 1 |
----+----+----+----+----+----+----+----+---
Multiply Stem.Leaf by 10**+1
SAS システム 18
15:55 Wednesday, June 29, 2005
Univariate Procedure
Variable=RESID1 Residual
Normal Probability Plot
22.5+ *
| *
| ***+*+++++
| *******++
| +++*******
| *************
| * * *********+
-12.5+*+++++++
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
/* Lesson 11-5 */
/* File Name = les1105.sas 06/30/05 */
data gakusei;
infile 'all05a.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
if sex^='M' & sex^='F' then delete; : 性別不明は除外
if shintyou=. | taijyuu=. | kyoui=. then delete; : 欠損のあるデータは除外
proc print data=gakusei(obs=10);
run;
proc corr data=gakusei; : 相関係数
where sex='M'; : 男性について
run; :
:
proc reg data=gakusei; : 回帰分析
model taijyuu=shintyou kyoui; :
where sex='M'; : 男性について
output out=outreg1 predicted=pred1 residual=resid1; :
run; :
proc print data=outreg1(obs=15);
run;
proc plot data=outreg1;
where sex='M'; : 対象データについて
plot taijyuu*shintyou;
plot taijyuu*kyoui;
plot taijyuu*pred1;
plot resid1*(pred1 shintyou kyoui taijyuu)/vref=0; : まとめて記述
/*
plot resid1*pred1 /vref=0;
plot resid1*shintyou/vref=0;
plot resid1*kyoui /vref=0;
plot resid1*taijyuu /vref=0;
*/
run;
proc univariate data=outreg1 plot normal;
var resid1;
run;
SAS システム 2
15:55 Wednesday, June 29, 2005
Correlation Analysis
5 'VAR' Variables: SHINTYOU TAIJYUU KYOUI KODUKAI TSUUWA
Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum
SHINTYOU 65 172.4 6.1412 11206.1 156.0 185.0
TAIJYUU 65 64.5338 9.1006 4194.7 46.0000 100.0
KYOUI 65 88.5231 8.5533 5754.0 56.0000 112.0
KODUKAI 61 54360.7 57528.0 3316000 0 300000
TSUUWA 9 9000.0 3316.6 81000.0 5000.0 15000.0
SAS システム 3
15:55 Wednesday, June 29, 2005
Correlation Analysis
Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0
/ Number of Observations
SHINTYOU TAIJYUU KYOUI KODUKAI TSUUWA
SHINTYOU 1.00000 0.42245 0.18792 0.11868 0.05579
0.0 0.0005 0.1339 0.3623 0.8866
65 65 65 61 9
TAIJYUU 0.42245 1.00000 0.65243 -0.04587 0.25053
0.0005 0.0 0.0001 0.7256 0.5156
65 65 65 61 9
KYOUI 0.18792 0.65243 1.00000 -0.12281 -0.20000
0.1339 0.0001 0.0 0.3457 0.6059
65 65 65 61 9
KODUKAI 0.11868 -0.04587 -0.12281 1.00000 0.44259
0.3623 0.7256 0.3457 0.0 0.2329
61 61 61 61 9
TSUUWA 0.05579 0.25053 -0.20000 0.44259 1.00000
0.8866 0.5156 0.6059 0.2329 0.0
9 9 9 9 9
SAS システム 6
15:55 Wednesday, June 29, 2005
Model: MODEL1
Dependent Variable: TAIJYUU
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 2 2750.23021 1375.11510 33.431 0.0001
Error 62 2550.25533 41.13315
C Total 64 5300.48554
Root MSE 6.41351 R-square 0.5189
Dep Mean 64.53385 Adj R-sq 0.5033
C.V. 9.93822
SAS システム 7
15:55 Wednesday, June 29, 2005
Parameter Estimates
Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 -70.823844 22.89744419 -3.093 0.0030
SHINTYOU 1 0.460606 0.13291031 3.466 0.0010
KYOUI 1 0.632022 0.09542833 6.623 0.0001
SAS システム 10
15:55 Wednesday, June 29, 2005
プロット : TAIJYUU*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ...
TAIJYUU |
100 + A
| A A
|
75 + A A A A A AA
| B B A C A A A C A A D A A A
| A A A A B A B A D B C A AAA A A AA A
50 + A B A
|
|
25 +
--+---------+---------+---------+---------+---------+---------+-
155 160 165 170 175 180 185
SHINTYOU
SAS システム 11
15:55 Wednesday, June 29, 2005
プロット : TAIJYUU*KYOUI. 凡例: A = 1 OBS, B = 2 OBS, ...
TAIJYUU |
100 + A
| A A
|
75 + AA BA A A
| A A C BAH BAAB A
| A A B C AAC EBF AA A
50 + A A A A
|
|
25 +
---+-------+-------+-------+-------+-------+-------+-------+--
50 60 70 80 90 100 110 120
KYOUI
SAS システム 12
15:55 Wednesday, June 29, 2005
プロット : TAIJYUU*PRED1. 凡例: A = 1 OBS, B = 2 OBS, ...
TAIJYUU |
100 + A
| A A
|
75 + AA AAB A
| BA A DABBBABB AAA
| A AA B AABBACDDBA B
50 + A A AA
|
|
25 +
--+-----------+-----------+-----------+-----------+-----------+-
40 50 60 70 80 90
Predicted Value of TAIJYUU
SAS システム 13
15:55 Wednesday, June 29, 2005
プロット : RESID1*PRED1. 凡例: A = 1 OBS, B = 2 OBS, ...
|
R 40 +
e |
s |
i 20 + A A
d | A A
u | A A BA A CBA AA
a 0 +---------------AA--A---A--ABA-BBBABB--B-C----------A-------------
l | AA A AAADBBA CB AA
|
-20 +
---+-----------+-----------+-----------+-----------+-----------+--
40 50 60 70 80 90
Predicted Value of TAIJYUU
SAS システム 14
15:55 Wednesday, June 29, 2005
プロット : RESID1*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ...
|
R 40 +
e |
s |
i 20 + A A
d | A A
u | A B A B A B A B AA
a 0 +----A-------A-----------A-B---A-C-A-A-A--AC---A-BA--B-A-A---A----
l | A B A A A B C A B A A A BA A A
|
-20 +
---+---------+---------+---------+---------+---------+---------+--
155 160 165 170 175 180 185
SHINTYOU
SAS システム 15
15:55 Wednesday, June 29, 2005
プロット : RESID1*KYOUI. 凡例: A = 1 OBS, B = 2 OBS, ...
|
R 40 +
e |
s |
i 20 + A A
d | A A
u | A B A B BD B
a 0 +------------------A----B-A-B---ABABAE-A-AC---A--------A----------
l | A B BBBAF AAB A A
|
-20 +
-+--------+--------+--------+--------+--------+--------+--------+-
50 60 70 80 90 100 110 120
KYOUI
SAS システム 16
15:55 Wednesday, June 29, 2005
プロット : RESID1*TAIJYUU. 凡例: A = 1 OBS, B = 2 OBS, ...
|
R 40 +
e |
s |
i 20 + A A
d | A A
u | A A B AAAC A A AA
a 0 +----------A------AA--ADACA-DA-A-CB------A------------------------
l | A A CA B FABABA A
|
-20 +
---+---------+---------+---------+---------+---------+---------+--
40 50 60 70 80 90 100
TAIJYUU
SAS システム 17
15:55 Wednesday, June 29, 2005
Univariate Procedure
Variable=RESID1 Residual
Moments
N 65 Sum Wgts 65
Mean 0 Sum 0
Std Dev 6.312507 Variance 39.84774
Skewness 1.210762 Kurtosis 1.816118
USS 2550.255 CSS 2550.255
CV . Std Mean 0.78297
T:Mean=0 0 Pr>|T| 1.0000
Num ^= 0 65 Num > 0 26
M(Sign) -6.5 Pr>=|M| 0.1360
Sgn Rank -131.5 Pr>=|S| 0.3943
W:Normal 0.91253 Pr<W 0.0001
SAS システム 20
15:55 Wednesday, June 29, 2005
Univariate Procedure
Variable=RESID1 Residual
Stem Leaf # Boxplot
2 2 1 0
1 8 1 0
1 024 3 |
0 5555667778 10 |
0 00001233344 11 +--+--+
-0 4444433333322111111100 22 *-----*
-0 99887766655555555 17 +-----+
----+----+----+----+--
Multiply Stem.Leaf by 10**+1
SAS システム 21
15:55 Wednesday, June 29, 2005
Univariate Procedure
Variable=RESID1 Residual
Normal Probability Plot
22.5+ *
| * ++
| **++++++
7.5+ +*******
| +++*******
| ***********
-7.5+ * * **********
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
where sex='M' and taijyuu<85;