/* Lesson 10-1 */
/* File Name = les1001.sas 06/24/04 */
data gakusei;
infile 'all04a.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
if sex^='M' & sex^='F' then delete;
proc print data=gakusei(obs=10);
run;
proc ttest data=gakusei; : t検定
class sex; : 分類したい特性変数の指定
var shintyou taijyuu kyoui kodukai; : 比較したい変量名
run; :
SAS システム 2
19:32 Wednesday, June 16, 2004
TTEST PROCEDURE
Variable: SHINTYOU
SEX N Mean Std Dev Std Error
-----------------------------------------------------------------------
F 94 159.18936170 5.45520306 0.56266123
M 190 172.09000000 5.40135736 0.39185565
Variances T DF Prob>|T|
---------------------------------------
Unequal -18.8147 183.8 0.0001
Equal -18.8782 282.0 0.0000
For H0: Variances are equal, F' = 1.02 DF = (93,189) Prob>F' = 0.8958
SAS システム 3
19:32 Wednesday, June 16, 2004
TTEST PROCEDURE
Variable: TAIJYUU
SEX N Mean Std Dev Std Error
-----------------------------------------------------------------------
F 63 48.42857143 4.64450520 0.58515265
M 190 62.13947368 7.72765047 0.56062269
Variances T DF Prob>|T|
---------------------------------------
Unequal -16.9193 178.7 0.0001
Equal -13.2982 251.0 0.0000
For H0: Variances are equal, F' = 2.77 DF = (189,62) Prob>F' = 0.0000
SAS システム 4
19:32 Wednesday, June 16, 2004
TTEST PROCEDURE
Variable: KYOUI
SEX N Mean Std Dev Std Error
-----------------------------------------------------------------------
F 32 82.93750000 4.35473417 0.76981552
M 61 88.70491803 8.61460826 1.10298756
Variances T DF Prob>|T|
---------------------------------------
Unequal -4.2878 90.9 0.0001
Equal -3.5503 91.0 0.0006
For H0: Variances are equal, F' = 3.91 DF = (60,31) Prob>F' = 0.0000
SAS システム 5
19:32 Wednesday, June 16, 2004
TTEST PROCEDURE
Variable: KODUKAI
SEX N Mean Std Dev Std Error
-----------------------------------------------------------------------
F 89 50589.88764045 48581.26753872 5149.60405991
M 181 49298.34254144 51281.56965350 3811.72905338
Variances T DF Prob>|T|
---------------------------------------
Unequal 0.2016 183.9 0.8405
Equal 0.1979 268.0 0.8433
For H0: Variances are equal, F' = 1.11 DF = (180,88) Prob>F' = 0.5740
/* Lesson 10-2 */
/* File Name = les1002.sas 06/24/04 */
data gakusei;
infile 'all04a.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
if sex^='M' & sex^='F' then delete;
proc print data=gakusei(obs=10);
run;
proc npar1way data=gakusei wilcoxon; : wilcoxon 検定
class sex; : 分類したい特性変数の指定
var shintyou taijyuu kyoui kodukai; : 比較したい変量名
run; :
SAS システム 2
19:32 Wednesday, June 16, 2004
N P A R 1 W A Y P R O C E D U R E
Wilcoxon Scores (Rank Sums) for Variable SHINTYOU
Classified by Variable SEX
Sum of Expected Std Dev Mean
SEX N Scores Under H0 Under H0 Score
F 94 5223.0 13395.0 650.846383 55.563830
M 190 35247.0 27075.0 650.846383 185.510526
Average Scores Were Used for Ties
Wilcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)
SAS システム 3
19:32 Wednesday, June 16, 2004
N P A R 1 W A Y P R O C E D U R E
S = 5223.00 Z = -12.5552 Prob > |Z| = 0.0001
T-Test Approx. Significance = 0.0001
Kruskal-Wallis Test (Chi-Square Approximation)
CHISQ = 157.65 DF = 1 Prob > CHISQ = 0.0001
SAS システム 4
19:32 Wednesday, June 16, 2004
N P A R 1 W A Y P R O C E D U R E
Wilcoxon Scores (Rank Sums) for Variable TAIJYUU
Classified by Variable SEX
Sum of Expected Std Dev Mean
SEX N Scores Under H0 Under H0 Score
F 63 2467.5000 8001.0 502.822144 39.166667
M 190 29663.5000 24130.0 502.822144 156.123684
Average Scores Were Used for Ties
Wilcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)
SAS システム 5
19:32 Wednesday, June 16, 2004
N P A R 1 W A Y P R O C E D U R E
S = 2467.50 Z = -11.0039 Prob > |Z| = 0.0001
T-Test Approx. Significance = 0.0001
Kruskal-Wallis Test (Chi-Square Approximation)
CHISQ = 121.11 DF = 1 Prob > CHISQ = 0.0001
SAS システム 6
19:32 Wednesday, June 16, 2004
N P A R 1 W A Y P R O C E D U R E
Wilcoxon Scores (Rank Sums) for Variable KYOUI
Classified by Variable SEX
Sum of Expected Std Dev Mean
SEX N Scores Under H0 Under H0 Score
F 32 961.0 1504.0 123.138679 30.0312500
M 61 3410.0 2867.0 123.138679 55.9016393
Average Scores Were Used for Ties
Wilcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)
SAS システム 7
19:32 Wednesday, June 16, 2004
N P A R 1 W A Y P R O C E D U R E
S = 961.000 Z = -4.40560 Prob > |Z| = 0.0001
T-Test Approx. Significance = 0.0001
Kruskal-Wallis Test (Chi-Square Approximation)
CHISQ = 19.445 DF = 1 Prob > CHISQ = 0.0001
SAS システム 8
19:32 Wednesday, June 16, 2004
N P A R 1 W A Y P R O C E D U R E
Wilcoxon Scores (Rank Sums) for Variable KODUKAI
Classified by Variable SEX
Sum of Expected Std Dev Mean
SEX N Scores Under H0 Under H0 Score
F 89 12662.5000 12059.5000 600.013767 142.275281
M 181 23922.5000 24525.5000 600.013767 132.168508
Average Scores Were Used for Ties
Wilcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)
SAS システム 9
19:32 Wednesday, June 16, 2004
N P A R 1 W A Y P R O C E D U R E
S = 12662.5 Z = 1.00414 Prob > |Z| = 0.3153
T-Test Approx. Significance = 0.3162
Kruskal-Wallis Test (Chi-Square Approximation)
CHISQ = 1.0100 DF = 1 Prob > CHISQ = 0.3149
/* Lesson 10-3 */
/* File Name = les1003.sas 06/24/04 */
data pair; :
input x y @@; : @@ は 1行に複数のデータがあることを示す
dif=x-y; : 差(difference)を計算する
cards; : データをプログラム内に記述する
3.51 3.39 3.07 3.39 3.29 3.20 3.03 3.11 : x1,y1, x2,y2, x3,y3, x4,y4,
3.38 3.17 3.30 3.09 3.15 3.17 3.25 3.09 : x5,y5, x6,y6, x7,y7, x8,y8
; :
:
proc print data=pair; :
run; :
proc univariate data=pair plot; :
var dif; : 差について
run; :
SAS システム 1
19:31 Wednesday, June 16, 2004
OBS X Y DIF
1 3.51 3.39 0.12
2 3.07 3.39 -0.32
3 3.29 3.20 0.09
4 3.03 3.11 -0.08
5 3.38 3.17 0.21
6 3.30 3.09 0.21
7 3.15 3.17 -0.02
8 3.25 3.09 0.16
SAS システム 2
19:31 Wednesday, June 16, 2004
Univariate Procedure
Variable=DIF
Moments
N 8 Sum Wgts 8
Mean 0.04625 Sum 0.37
Std Dev 0.180629 Variance 0.032627
Skewness -1.31523 Kurtosis 1.511099
USS 0.2455 CSS 0.228388
CV 390.5489 Std Mean 0.063862
T:Mean=0 0.724218 Pr>|T| 0.4924
Num ^= 0 8 Num > 0 5
M(Sign) 1 Pr>=|M| 0.7266
Sgn Rank 7 Pr>=|S| 0.3594
SAS システム 5
19:31 Wednesday, June 16, 2004
Univariate Procedure
Variable=DIF
Stem Leaf # Boxplot
2 11 2 |
1 26 2 +-----+
0 9 1 | + |
-0 82 2 +-----+
-1 |
-2 |
-3 2 1 |
----+----+----+----+
Multiply Stem.Leaf by 10**-1
SAS システム 6
19:31 Wednesday, June 16, 2004
Univariate Procedure
Variable=DIF
Normal Probability Plot
0.25+ *++++*
| *++*+++
| *++++
-0.05+ *+++*++
| +++++
| ++++++
-0.35+ +++++ *
+----+----+----+----+----+----+----+----+----+----+
-2 -1 0 +1 +2
/* Lesson 10-4 */
/* File Name = les1004.sas 06/24/04 */
data gakusei;
infile 'all04a.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
if sex^='M' & sex^='F' then delete;
proc print data=gakusei(obs=10);
run;
proc plot data=gakusei; : 散布図を描く
plot shintyou*taijyuu; : 散布図の変量を指定(縦軸、横軸の順)
plot taijyuu*shintyou; :
run: :
proc corr data=gakusei; : 相関係数(相関行列)を計算
run: :
SAS システム 2
16:17 Friday, June 18, 2004
プロット : SHINTYOU*TAIJYUU. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 40 オブザベーションが欠損値です.)
SHINTYOU |
200 +
|
| B A
180 + A ADCDDDBEA B B A A
| AAEDKHTMGGCEDCB BA
| AEAGIFEDBBBEAA AA A A
160 + ADCEBHDDAABB
| A EB DCDA A A
| A AAA
140 +
---+-----------+-----------+-----------+-----------+--
20 40 60 80 100
TAIJYUU
SAS システム 3
16:17 Friday, June 18, 2004
プロット : TAIJYUU*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 40 オブザベーションが欠損値です.)
100 + A
| A A
TAIJYUU | A A A A B A A
| A B CBDDC DCEAD CCF B AA
| A AA D B CABBF HBOHKBIFFDC BADBB A
50 + AAA CABDA CCH F EBCGF DAAAB BA
| A B C BA BA
|
|
|
0 +
--+-----------+-----------+-----------+-----------+-----------+-
140 150 160 170 180 190
SHINTYOU
SAS システム 4
16:17 Friday, June 18, 2004
Correlation Analysis
5 'VAR' Variables: SHINTYOU TAIJYUU KYOUI KODUKAI TSUUWA
Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum
SHINTYOU 284 167.8 8.1392 47660.9 145.0 186.0
TAIJYUU 253 58.7253 9.2406 14857.5 35.0000 100.0
KYOUI 93 86.7204 7.8979 8065.0 56.0000 112.0
KODUKAI 270 49724.1 50320.7 13425500 0 300000
TSUUWA 76 7279.6 5074.8 553248 200.0 30000.0
SAS システム 5
16:17 Friday, June 18, 2004
Correlation Analysis
Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0
/ Number of Observations
SHINTYOU TAIJYUU KYOUI KODUKAI TSUUWA
SHINTYOU 1.00000 0.70810 0.39574 0.04566 0.09515
0.0 0.0001 0.0001 0.4601 0.4168
284 253 93 264 75
TAIJYUU 0.70810 1.00000 0.67545 -0.00639 0.03815
0.0001 0.0 0.0001 0.9222 0.7592
253 253 93 236 67
KYOUI 0.39574 0.67545 1.00000 -0.08997 0.14602
0.0001 0.0001 0.0 0.4017 0.5760
93 93 93 89 17
KODUKAI 0.04566 -0.00639 -0.08997 1.00000 0.07144
0.4601 0.9222 0.4017 0.0 0.5481
264 236 89 270 73
TSUUWA 0.09515 0.03815 0.14602 0.07144 1.00000
0.4168 0.7592 0.5760 0.5481 0.0
75 67 17 73 76
[注意] 相関行列は細切れに表示されるので、 不要部分を削除することによって整形しレポート等に使うこと。