/* Lesson 12-1 */
/* File Name = les1201.sas 07/04/02 */
data gakusei;
infile 'all02.prn' firstobs=2;
input sex $ height weight chest
jitaku $ kodukai carrier $ tsuuwa;
proc print data=gakusei(obs=10);
run; :
:
proc plot data=gakusei; : 散布図を描く
plot height*weight; : 散布図の変量を指定(縦軸、横軸の順)
plot weight*height; :
run; :
:
proc corr data=gakusei; : 相関係数(相関行列)を計算
run; :
SAS システム 2
11:52 Wednesday, June 26, 2002
プロット : HEIGHT*WEIGHT. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 32 オブザベーションが欠損値です.)
HEIGHT |
200 +
|
| B A
180 + A ADBCDCACA A B A A
| AABCJHPMGFCCCCB BA
| AD FHEDDCBBCAA A A
160 + ADBCAGCCAABB
| A D DCAA A A
| A AAA
140 +
---+-----------+-----------+-----------+-----------+--
20 40 60 80 100
WEIGHT
SAS システム 3
11:52 Wednesday, June 26, 2002
プロット : WEIGHT*HEIGHT. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 32 オブザベーションが欠損値です.)
100 + A
| A A
WEIGHT | A A B A A
| B BBDDC CADAC BBD B AA
| A AA C B CABBF GBLHKBHFECB BACBB A
50 + AA CABBA BBE E EBBEE DAAAA A
| A B B A BA
|
|
|
0 +
--+-----------+-----------+-----------+-----------+-----------+--
140 150 160 170 180 190
HEIGHT
SAS システム 4
11:52 Wednesday, June 26, 2002
Correlation Analysis
5 'VAR' Variables: HEIGHT WEIGHT CHEST KODUKAI TSUUWA
Simple Statistics
Variable N Mean Std Dev Sum Minimum Maximum
HEIGHT 234 168.1 8.0546 39343.6 145.0 186.0
WEIGHT 211 58.9014 9.2295 12428.2 35.0000 100.0
CHEST 81 86.9383 7.7852 7042.0 56.0000 112.0
KODUKAI 221 51436.7 52821.5 11367500 0 300000
TSUUWA 31 8121.0 5186.1 251750 2000.0 30000.0
SAS システム 5
11:52 Wednesday, June 26, 2002
Correlation Analysis
Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0
/ Number of Observations
HEIGHT WEIGHT CHEST KODUKAI TSUUWA
HEIGHT 1.00000 0.70376 0.38040 0.04934 0.01218
0.0 0.0001 0.0005 0.4717 0.9482
234 211 81 215 31
WEIGHT 0.70376 1.00000 0.67279 -0.02472 0.10303
0.0001 0.0 0.0001 0.7315 0.5880
211 211 81 195 30
CHEST 0.38040 0.67279 1.00000 -0.11563 0.55031
0.0005 0.0001 0.0 0.3166 0.2579
81 81 81 77 6
KODUKAI 0.04934 -0.02472 -0.11563 1.00000 -0.04318
0.4717 0.7315 0.3166 0.0 0.8240
215 195 77 221 29
TSUUWA 0.01218 0.10303 0.55031 -0.04318 1.00000
0.9482 0.5880 0.2579 0.8240 0.0
31 30 6 29 31
/* Lesson 12-2 */
/* File Name = les1202.sas 07/04/02 */
data gakusei;
infile 'all02.prn' firstobs=2;
input sex $ height weight chest
jitaku $ kodukai carrier $ tsuuwa;
proc print data=gakusei(obs=10);
run; :
proc reg data=gakusei; : 回帰分析
model weight=height; : 変量を指定
output out=outreg1 predicted=pred1 residual=resid1; : 結果項目の保存
run; :
:
proc print data=outreg1(obs=15); : まずは表示
run; :
:
proc plot data=outreg1; : 散布図を描く
plot height*weight; : 身長と体重
plot weight*height; : 体重と身長
plot pred1*weight; : 予測値と観測値
plot resid1*pred1; : 残差と予測値(残差解析)
plot resid1*height; : 残差と説明変数(残差解析)
plot resid1*weight; : 残差と目的変数(残差解析)
run; :
where weight^=. and height^=.;
SAS システム 2
11:50 Wednesday, June 26, 2002
Model: MODEL1
Dependent Variable: WEIGHT
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 1 8859.83634 8859.83634 205.094 0.0001
Error 209 9028.59323 43.19901
C Total 210 17888.42957
Root MSE 6.57260 R-square 0.4953
Dep Mean 58.90142 Adj R-sq 0.4929
C.V. 11.15864
SAS システム 3
11:50 Wednesday, June 26, 2002
Parameter Estimates
Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 -79.000323 9.63990492 -8.195 0.0001
HEIGHT 1 0.816529 0.05701588 14.321 0.0001
SAS システム 4
11:50 Wednesday, June 26, 2002
K C
H W J O A T R
E E C I D R S P E
I I H T U R U R S
O S G G E A K I U E I
B E H H S K A E W D D
S X T T T U I R A 1 1
1 F 145.0 38.0 . J 10000 . 39.3964 -1.3964
2 F 148.0 42.0 . J 50000 . 41.8460 0.1540
3 F 148.0 43.0 80 J 50000 DoCoMo 4000 41.8460 1.1540
4 F 148.9 . . J 60000 . 42.5809 .
5 F 149.0 45.0 . G 60000 . 42.6625 2.3375
6 F 150.0 46.0 86 40000 . 43.4791 2.5209
7 F 151.7 41.5 80 J 35000 . 44.8672 -3.3672
8 F 152.0 35.0 77 J 60000 DoCoMo 2000 45.1121 -10.1121
9 F 153.0 41.0 . J 125000 No . 45.9287 -4.9287
10 F 153.0 46.5 87 G 10000 . 45.9287 0.5713
11 F 153.0 50.0 . G 70000 DoCoMo 10000 45.9287 4.0713
12 F 153.0 55.0 78 J 30000 . 45.9287 9.0713
13 F 153.5 46.0 . J 30000 J-PHONE 8000 46.3369 -0.3369
14 F 154.0 46.0 . . . 46.7452 -0.7452
15 F 155.0 48.0 83 G 180000 . 47.5617 0.4383
SAS システム 7
11:50 Wednesday, June 26, 2002
プロット : WEIGHT*HEIGHT. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 32 オブザベーションが欠損値です.)
100 + A
| A A
WEIGHT | A A B A A
| B BBDDC CADAC BBD B AA
| A AA C B CABBF GBLHKBHFECB BACBB A
50 + AA CABBA BBE E EBBEE DAAAA A
| A B B A BA
|
|
|
0 +
--+-----------+-----------+-----------+-----------+-----------+--
140 150 160 170 180 190
HEIGHT
SAS システム 8
11:50 Wednesday, June 26, 2002
プロット : PRED1*WEIGHT. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 32 オブザベーションが欠損値です.)
80 +
|
PRED1 | A B A
| A ADAAEAA D A A A A
| A BBBIEDD F A A BB
60 + BDBGGGGJBFBAADAB A
| AE DGBF BCAAC
| BBBBADAB AAA
| BA BBAAA A A
| A B AB A A
40 + A AA
---+------------+------------+------------+------------+--
20 40 60 80 100
WEIGHT
SAS システム 9
11:50 Wednesday, June 26, 2002
プロット : RESID1*PRED1. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 32 オブザベーションが欠損値です.)
|
R 50 +
e |
s | A A
i 25 +
d | A A A A AA A
u | A A A BBAA BABCDCBAA AB A A
a 0 + A BAA ABBBBAABE CEBBCGGBKHHGFFBCABE AAA
l | AA BAA B BA ADDDABCDB CD BBAABA
| A
-25 +
---+-----------+-----------+-----------+-----------+-----------+--
30 40 50 60 70 80
Predicted Value of WEIGHT
SAS システム 10
11:50 Wednesday, June 26, 2002
プロット : RESID1*HEIGHT. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 32 オブザベーションが欠損値です.)
|
R 50 +
e |
s | A A
i 25 +
d | A A A A A A A
u | A A A B BAA B ABCDC BAA A B A A
a 0 + A BAA A CABBA ABE C EBBCG GBKFIAGFFBC ABE A AA
l | A A BA A B B A ADD DABCCAB CBB BABAB A
| A
-25 +
---+-----------+-----------+-----------+-----------+-----------+--
140 150 160 170 180 190
HEIGHT
SAS システム 11
11:50 Wednesday, June 26, 2002
プロット : RESID1*WEIGHT. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 32 オブザベーションが欠損値です.)
|
R 50 +
e |
s | A A
i 25 +
d | A B BA A
u | AAABBAGBCAFAB B A
a 0 + A BAADCCGHCJFIQNFJAG C
l | A CABCF BIBGCCECAA
| A
-25 +
---+------------+------------+------------+------------+--
20 40 60 80 100
WEIGHT
[式(a)]
1次元正規分布 N(0,1)
[式(b)]
2次元正規分布 N({0,0},{1,1}, ρ=0.0)
[式(c)]
2次元正規分布 N({0,0},{1,1}, ρ=0.7)
[式(d)]
2次元正規分布 N({0,0},{1,1}, ρ=0.7)、y=1 で切り出し
[式(e)]
2次元正規分布 N({0,0},{1,1}, ρ=0.7)、x+y=2 で切り出し