/* Lesson 13-1 */
/* File Name = les1301.sas 07/12/07 */
data gakusei;
infile 'all07ae.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
proc print data=gakusei(obs=10);
run;
proc plot data=gakusei; : 散布図
plot shintyou*taijyuu; : 元の変量のプロット
run; :
proc princomp cov data=gakusei out=outprin; : 主成分分析(分散共分散行列)
var shintyou taijyuu; : 2変量
run; :
proc print data=outprin(obs=15); : 結果の出力
run; :
proc plot data=outprin; : 散布図
plot prin2*prin1/vref=0 href=0; : 主成分得点のプロット
run; :
: 参考までに、
proc sort data=outprin; : 説明のためにソートしてみる
by prin1; : 第一主成分で
run; :
proc print data=outprin; : 体重がややが効いていることの確認
run; :
SAS システム 2
10:30 Monday, July 9, 2007
プロット : SHINTYOU*TAIJYUU. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 49 オブザベーションが欠損値です.)
SHINTYOU |
200 +
|
| A B A A
180 + A BFCFDEBGA B B A A A
| CAHELIVQLHDHEDB BC A
| AGAGJJGFCCDEAA AA A A
160 + ADEHDIFDBACB
| A ECBEDDA A A
| A BAA
140 +
---+-----------+-----------+-----------+-----------+--
20 40 60 80 100
TAIJYUU
SAS システム 3
10:30 Monday, July 9, 2007
Principal Component Analysis
326 Observations
2 Variables
Simple Statistics
SHINTYOU TAIJYUU
Mean 168.6926380 58.78466258
StD 8.0313352 9.33278478
SAS システム 4
10:30 Monday, July 9, 2007
Principal Component Analysis
Covariance Matrix
SHINTYOU TAIJYUU
SHINTYOU 64.50234563 52.81268674
TAIJYUU 52.81268674 87.10087173
Total Variance = 151.60321737
Eigenvalues of the Covariance Matrix
Eigenvalue Difference Proportion Cumulative
PRIN1 129.810 108.016 0.856245 0.85625
PRIN2 21.794 . 0.143755 1.00000
SAS システム 5
10:30 Monday, July 9, 2007
Principal Component Analysis
Eigenvectors
PRIN1 PRIN2
SHINTYOU 0.628802 0.777565
TAIJYUU 0.777565 -.628802
SAS システム 6
10:30 Monday, July 9, 2007
S
H T K C
I A J O A T
N I K I D R S P P
T J Y T U R U R R
O S Y Y O A K Y U I I
B E O U U K A E W N N
S X U U I U I R A 1 2
1 F 145.0 38.0 . J 10000 . -31.0594 -5.35312
2 F 146.7 41.0 85 J 10000 Vodafone 6000 -27.6578 -5.91767
3 F 148.0 42.0 . J 50000 . -26.0627 -5.53564
4 F 148.0 43.0 80 J 50000 DoCoMo 4000 -25.2852 -6.16444
5 F 148.9 . . J 60000 . . .
6 F 149.0 45.0 . G 60000 . -23.1013 -6.64448
7 F 150.0 46.0 86 40000 . -21.6949 -6.49572
8 F 151.0 45.0 . J 20000 docomo 5000 -21.8436 -5.08935
9 F 151.0 50.0 . G 60000 J-PHONE . -17.9558 -8.23336
10 F 151.7 41.5 80 J 35000 . -24.1250 -2.34424
11 F 152.0 35.0 77 J 60000 DoCoMo 2000 -28.9905 1.97624
12 F 152.0 43.0 . J 20000 au 3500 -22.7700 -3.05418
13 F 152.0 44.0 . 45000 DoCoMo 4000 -21.9924 -3.68298
14 F 153.0 41.0 . J 125000 No . -23.6963 -1.01901
15 F 153.0 42.0 . G 0 Vodafone 1000 -22.9187 -1.64781
SAS システム 8
10:30 Monday, July 9, 2007
プロット : PRIN2*PRIN1. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 49 オブザベーションが欠損値です.)
20 + |
| |
PRIN2 | A | A
| BB DACBBACCAA B
| C GBAFCCFHDFFHCBED A A
0 +---------A---BBBBDAFCAJ-CHFGFEHNDACGC-G-AA-----A---------
| A AAAABBACECAADCB C CBCDDBCEE A AA
| AAA AA A A B B|BA A A AAB A
| A | AA A A
| | A A
-20 + | A A
---+------------+------------+------------+------------+--
-40 -20 0 20 40
PRIN1
SAS システム 9
10:30 Monday, July 9, 2007
OBS SEX SHINTYOU TAIJYUU KYOUI JITAKU KODUKAI CARRYER TSUUWA PRIN1 PRIN2
1 F 148.9 . . J 60000 . . .
2 F 153.0 . . G 120000 DoCoMo 200 . .
3 F 153.0 . . 50000 5000 . .
≪中略≫
SAS システム 47
10:30 Monday, July 9, 2007
S
H T K C
I A J O A T
N I K I D R S P P
T J Y T U R U R R
O S Y Y O A K Y U I I
B E O U U K A E W N N
S X U U I U I R A 1 2
312 M 171.0 70 89 J 60000 . 10.1715 -5.25811
313 M 176.0 66 . G 100000 docomo 5500 10.2053 1.14493
314 M 179.9 63 . J 30000 . 10.3249 6.06384
315 M 175.0 67 . J 45000 . 10.3540 -0.26144
316 M 174.0 68 . G 0 9000 10.5028 -1.66781
317 M 173.0 69 . J 60000 au 9000 10.6516 -3.07417
318 M 183.0 61 . J 100000 . 10.7191 9.73190
319 M 172.0 70 90 J 30000 . 10.8003 -4.48054
320 M 172.0 70.0 . J 20000 . 10.8003 -4.4805
321 M 177.0 66.0 87 G 40000 DoCoMo 6000 10.8341 1.9225
322 M 171.0 71.0 . G 160000 . 10.9491 -5.8869
323 M 176.0 67.0 83 G 0 . 10.9828 0.5161
324 M 181.0 63.0 . J 0 au 4000 11.0166 6.9192
325 M 175.0 68.0 80 150000 au 15000 11.1316 -0.8902
326 M 175.0 68.0 . J 0 DoCoMo 20000 11.1316 -0.8902
327 M 180.0 64.0 90 J 35000 . 11.1654 5.5128
328 M 180.0 64.0 90 G 60000 au 10000 11.1654 5.5128
329 M 179.0 65.0 . J 0 . 11.3141 4.1064
330 M 168.0 74.0 . G 120000 DDIp 15000 11.3954 -10.1060
331 M 178.0 66.0 95 J 30000 au 3000 11.4629 2.7001
332 M 177.0 67.0 . 4000 DoCoMo 8000 11.6116 1.2937
333 M 173.8 69.6 90 J 30000 DoCoMo 13000 11.6212 -2.8294
334 M 180.0 65.0 88 J 30000 . 11.9429 4.8840
335 M 180.0 65.0 . G 100000 . 11.9429 4.8840
336 M 179.0 66 . 30000 . 12.0917 3.4776
337 M 168.0 75 . G 150000 . 12.1729 -10.7348
338 M 173.0 71 100 G 0 . 12.2067 -4.3318
339 M 178.0 67 . J 0 . 12.2405 2.0713
340 M 172.0 72 89 G 150000 . 12.3555 -5.7381
341 M 172.0 72 . G 60000 au 3500 12.3555 -5.7381
342 M 177.0 68 . G 80000 . 12.3892 0.6649
343 M 182.0 64 . G 0 . 12.4230 7.0679
344 M 165.0 78.0 . G 0 2098 12.6192 -14.9539
345 M 170.0 74.0 90 J 0 . 12.6530 -8.5509
346 M 175.0 70.0 95 G 50000 8000 12.6867 -2.1478
347 M 178.0 68.0 . J 100000 DoCoMo 4000 13.0180 1.4425
348 M 184.0 65.0 . G 140000 au 10000 14.4581 7.9943
349 M 170.0 78.0 . 45000 Vodafon 10000 15.7632 -11.0661
350 M 179.9 70.0 . J 15000 DoCoMo 700 15.7679 1.6622
351 M 175.0 74.0 . J 0 . 15.7970 -4.6631
352 M 180.0 70.0 94 G 70000 au 5000 15.8308 1.73998
353 M 180.0 70.0 . J 40000 au 4000 15.8308 1.73998
354 M 180.0 70.0 . . . 15.8308 1.73998
355 M 180.0 70.0 . J 40000 DoCoMo 6500 15.8308 1.73998
356 M 180.0 70.0 . 5000 3000 15.8308 1.73998
357 M 178.7 71.2 95 0 . 15.9464 -0.02542
358 M 184.0 68.0 85 30000 . 16.7908 6.10784
359 M 173.5 76.5 . G 100000 . 16.7977 -7.40141
360 M 182.0 70.0 90 G 100000 . 17.0884 3.2951
361 M 185.0 68.0 93 J 0 . 17.4196 6.8854
362 M 175.0 77.0 95 G 130000 . 18.1297 -6.5495
363 M 179.1 74.2 . 0 au 4000 18.5306 -1.6008
364 M 175.0 79.0 . J 0 No 0 19.6848 -7.8071
365 M 176.5 78.0 96 J 10000 . 19.8505 -6.0119
366 M 177.0 78.0 . J 40000 . 20.1649 -5.6231
367 M 181.5 74.5 . G 120000 au 3000 20.2730 0.0767
368 M 185.0 72.0 . J 30000 7000 20.5299 4.3702
369 M 178.0 78.0 110 G 50000 . 20.7937 -4.8456
370 M 173.0 84.0 46 G 350000 . 22.3150 -12.5062
371 M 169.3 88.5 94 J 0 . 23.4875 -18.2128
372 M 186.0 82.0 . J 0 . 28.9343 -1.1403
373 M 182.0 90.0 100 J 40000 . 32.6397 -9.2809
374 M 178.0 95.0 . 1000 No . 34.0123 -15.5352
375 M 178.0 100.0 112 G 60000 . 37.9001 -18.6792
/* Lesson 13-2 */
/* File Name = les1302.sas 07/12/07 */
data gakusei;
infile 'all07ae.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
proc print data=gakusei(obs=10);
run;
proc princomp cov data=gakusei out=outprin; : 主成分分析(分散共分散行列)
var shintyou taijyuu kyoui; : 3変量
run; :
proc print data=outprin(obs=15); : 結果の出力
run; :
proc plot data=outprin; : 散布図
plot prin2*prin1/vref=0 href=0; : 主成分得点のプロット
plot prin3*prin2/vref=0 href=0; :
plot prin3*prin1/vref=0 href=0; :
run; :
SAS システム 3
10:30 Monday, July 9, 2007
Principal Component Analysis
114 Observations
3 Variables
Simple Statistics
SHINTYOU TAIJYUU KYOUI
Mean 167.3517544 58.79298246 86.17543860
StD 8.7227627 10.86282708 8.36262822
SAS システム 4
10:30 Monday, July 9, 2007
Principal Component Analysis
Covariance Matrix
SHINTYOU TAIJYUU KYOUI
SHINTYOU 76.0865898 69.6653222 23.7439373
TAIJYUU 69.6653222 118.0010123 43.5906226
KYOUI 23.7439373 43.5906226 69.9335507
SAS システム 5
10:30 Monday, July 9, 2007
Principal Component Analysis
Total Variance = 264.02115277
Eigenvalues of the Covariance Matrix
Eigenvalue Difference Proportion Cumulative
PRIN1 189.966 138.636 0.719512 0.71951
PRIN2 51.330 28.606 0.194417 0.91393
PRIN3 22.724 . 0.086070 1.00000
SAS システム 6
10:30 Monday, July 9, 2007
Principal Component Analysis
Eigenvectors
PRIN1 PRIN2 PRIN3
SHINTYOU 0.539085 -.407903 0.736887
TAIJYUU 0.751825 -.161336 -.639320
KYOUI 0.379667 0.898658 0.219698
SAS システム 7
10:30 Monday, July 9, 2007
S
H T K C
I A J O A T
N I K I D R S P P P
T J Y T U R U R R R
O S Y Y O A K Y U I I I
B E O U U K A E W N N N
S X U U I U I R A 1 2 3
1 F 145.0 38.0 . J 10000 . . . .
2 F 146.7 41.0 85 J 10000 Vodafone 6000 -24.9565 10.2382 -4.10085
3 F 148.0 42.0 . J 50000 . . . .
4 F 148.0 43.0 80 J 50000 DoCoMo 4000 -24.6504 4.8920 -5.52002
5 F 148.9 . . J 60000 . . . .
6 F 149.0 45.0 . G 60000 . . . .
7 F 150.0 46.0 86 40000 . -19.0388 8.9841 -4.64602
8 F 151.0 45.0 . J 20000 docomo 5000 . . .
9 F 151.0 50.0 . G 60000 J-PHONE . . . .
10 F 151.7 41.5 80 J 35000 . -23.7835 3.6248 -1.83456
11 F 152.0 35.0 77 J 60000 DoCoMo 2000 -29.6477 1.8551 1.88299
12 F 152.0 43.0 . J 20000 au 3500 . . .
13 F 152.0 44.0 . 45000 DoCoMo 4000 . . .
14 F 153.0 41.0 . J 125000 No . . . .
15 F 153.0 42.0 . G 0 Vodafone 1000 . . .
SAS システム 9
10:30 Monday, July 9, 2007
プロット : PRIN2*PRIN1. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 261 オブザベーションが欠損値です.)
PRIN2 | |
20 + |
| A | A A A A
| AA AAB BDA D | A AC A
0 +--------A----A-ABCDAED-DAAADAEDABDCBAC-AA-A-----A----------------
| A A A A A C BAAB A A
| A A | A AA
-20 + |
| A |
| |
-40 + | A
---+-----------+-----------+-----------+-----------+-----------+--
-40 -20 0 20 40 60
PRIN1
SAS システム 10
10:30 Monday, July 9, 2007
プロット : PRIN3*PRIN2. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 261 オブザベーションが欠損値です.)
PRIN3 | |
10 + A A A |
| AA A AB B |AA
| AA C BCFECA AA
0 +-------------------------------A----B-A--AA-BEDEDCBDA-----B------
| A A ACBAAEBBA ABA A
| A A AA B
-10 + A| A
| | A
| |A
-20 + A |
-+--------+--------+--------+--------+--------+--------+--------+-
-50 -40 -30 -20 -10 0 10 20
PRIN2
SAS システム 11
10:30 Monday, July 9, 2007
プロット : PRIN3*PRIN1. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 261 オブザベーションが欠損値です.)
PRIN3 | |
10 + | A A A
| |AB B C B
| A A AC BB B |ABBCBAA C
0 +---------------ACABEBB-BCAABAABBAAB-B-------A--------------------
| AAA ABBA BA A A CAAABA AA
| A A AA | A A
-10 + A A |
| | A
| | A
-20 + | A
---+-----------+-----------+-----------+-----------+-----------+--
-40 -20 0 20 40 60
PRIN1
/* Lesson 13-3 */
/* File Name = les1303.sas 07/12/07 */
data gakusei;
infile 'all07ae.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
proc print data=gakusei(obs=10);
run; :
proc princomp data=gakusei out=outprin; : 相関係数を使って
var shintyou taijyuu kyoui; :
run; :
proc print data=outprin(obs=15);
run;
proc plot data=outprin;
plot prin2*prin1/vref=0 href=0;
plot prin3*prin2/vref=0 href=0;
plot prin3*prin1/vref=0 href=0;
run;
SAS システム 3
10:30 Monday, July 9, 2007
Principal Component Analysis
114 Observations
3 Variables
Simple Statistics
SHINTYOU TAIJYUU KYOUI
Mean 167.3517544 58.79298246 86.17543860
StD 8.7227627 10.86282708 8.36262822
SAS システム 4
10:30 Monday, July 9, 2007
Principal Component Analysis
Correlation Matrix
SHINTYOU TAIJYUU KYOUI
SHINTYOU 1.0000 0.7352 0.3255
TAIJYUU 0.7352 1.0000 0.4799
KYOUI 0.3255 0.4799 1.0000
SAS システム 5
10:30 Monday, July 9, 2007
Principal Component Analysis
Eigenvalues of the Correlation Matrix
Eigenvalue Difference Proportion Cumulative
PRIN1 2.04697 1.33665 0.682322 0.68232
PRIN2 0.71032 0.46760 0.236772 0.91909
PRIN3 0.24272 . 0.080906 1.00000
SAS システム 6
10:30 Monday, July 9, 2007
Principal Component Analysis
Eigenvectors
PRIN1 PRIN2 PRIN3
SHINTYOU 0.599200 -.483881 0.637823
TAIJYUU 0.640769 -.187770 -.744418
KYOUI 0.479974 0.854752 0.197544
/* Lesson 14-1 */
/* File Name = les1401.sas 07/19/07 */
data food; :
infile 'food.dat'; : ファイルの読み込み
input X01-X10; : 変量リスト、連続的に
label X01='M(-15)' : 各変量に解りやすい名前を付ける
X02='M(16-20)' : M : 男性
X03='M(21-30)' : F : 女性
X04='M(31-40)' : ()内 : 年齢
X05='M(41-)' :
X06='F(-15)' :
X07='F(16-20)' :
X08='F(21-30)' :
X09='F(31-40)' :
X10='F(41-)'; :
:
proc print data=food(obs=10); : データの表示
run; :
proc factor data=food; : オプションを付けないと主成分分析
var X01-X10; : 解析に使う変量リスト
run; :
SAS システム 1
19:05 Wednesday, July 18, 2007
OBS X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
1 7.69 7.31 7.47 7.76 7.87 7.51 7.24 7.70 7.91 7.95
2 6.59 5.56 6.21 6.04 5.81 6.64 6.11 6.53 6.44 6.64
3 4.55 4.18 4.36 4.25 4.53 4.60 3.66 4.04 3.68 4.43
4 6.78 6.11 6.30 5.98 5.56 6.37 6.29 5.43 5.32 5.28
5 6.47 6.24 6.02 5.42 5.88 6.00 5.60 4.60 5.40 5.95
SAS システム 2
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 10 Average = 1
1 2 3 4 5
Eigenvalue 6.8280 1.7619 0.7545 0.2624 0.1216
Difference 5.0661 1.0074 0.4921 0.1408 0.0236
Proportion 0.6828 0.1762 0.0754 0.0262 0.0122
Cumulative 0.6828 0.8590 0.9344 0.9607 0.9728
6 7 8 9 10
Eigenvalue 0.0980 0.0721 0.0441 0.0358 0.0219
Difference 0.0259 0.0280 0.0083 0.0139
Proportion 0.0098 0.0072 0.0044 0.0036 0.0022
Cumulative 0.9826 0.9898 0.9942 0.9978 1.0000
SAS システム 3
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
2 factors will be retained by the MINEIGEN criterion.
SAS システム 4
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
Factor Pattern
FACTOR1 FACTOR2
X01 0.74741 -0.59244 M(-15)
X02 0.86579 -0.31836 M(16-20)
X03 0.84491 0.22079 M(21-30)
X04 0.78216 0.47602 M(31-40)
X05 0.68129 0.67325 M(41-)
X06 0.80647 -0.54140 F(-15)
X07 0.89959 -0.33542 F(16-20)
X08 0.90901 -0.04289 F(21-30)
X09 0.90316 0.21817 F(31-40)
X10 0.79262 0.35477 F(41-)
SAS システム 5
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
Variance explained by each factor
FACTOR1 FACTOR2
6.827955 1.761873
Final Communality Estimates: Total = 8.589828
X01 X02 X03 X04 X05
0.909618 0.850950 0.762624 0.838371 0.917413
X06 X07 X08 X09 X10
0.943520 0.921775 0.828147 0.863298 0.754112
/* Lesson 14-2 */
/* File Name = les1402.sas 07/19/07 */
data food;
infile 'food.dat';
input X01-X10;
label X01='M(-15)'
X02='M(16-20)'
X03='M(21-30)'
X04='M(31-40)'
X05='M(41-)'
X06='F(-15)'
X07='F(16-20)'
X08='F(21-30)'
X09='F(31-40)'
X10='F(41-)';
proc print data=food(obs=10);
run; :
proc factor data=food nfactor=3 out=fscore; : 因子数3、出力の保存
var X01-X10; :
run; :
proc plot data=fscore; :
plot factor1*factor2/vref=0.0 href=0.0; : 第1因子 x 第2因子、軸
plot factor2*factor3/vref=0.0 href=0.0; : 第2因子 x 第3因子、軸
run; :
SAS システム 2
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 10 Average = 1
1 2 3 4 5
Eigenvalue 6.8280 1.7619 0.7545 0.2624 0.1216
Difference 5.0661 1.0074 0.4921 0.1408 0.0236
Proportion 0.6828 0.1762 0.0754 0.0262 0.0122
Cumulative 0.6828 0.8590 0.9344 0.9607 0.9728
6 7 8 9 10
Eigenvalue 0.0980 0.0721 0.0441 0.0358 0.0219
Difference 0.0259 0.0280 0.0083 0.0139
Proportion 0.0098 0.0072 0.0044 0.0036 0.0022
Cumulative 0.9826 0.9898 0.9942 0.9978 1.0000
SAS システム 3
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
3 factors will be retained by the NFACTOR criterion.
SAS システム 4
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
Factor Pattern
FACTOR1 FACTOR2 FACTOR3
X01 0.74741 -0.59244 0.16808 M(-15)
X02 0.86579 -0.31836 0.29190 M(16-20)
X03 0.84491 0.22079 0.38417 M(21-30)
X04 0.78216 0.47602 0.32604 M(31-40)
X05 0.68129 0.67325 0.11067 M(41-)
X06 0.80647 -0.54140 -0.07270 F(-15)
X07 0.89959 -0.33542 -0.14888 F(16-20)
X08 0.90901 -0.04289 -0.25110 F(21-30)
X09 0.90316 0.21817 -0.27989 F(31-40)
X10 0.79262 0.35477 -0.45389 F(41-)
SAS システム 5
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
Variance explained by each factor
FACTOR1 FACTOR2 FACTOR3
6.827955 1.761873 0.754451
Final Communality Estimates: Total = 9.344279
X01 X02 X03 X04 X05
0.937870 0.936157 0.910210 0.944673 0.929662
X06 X07 X08 X09 X10
0.948805 0.943939 0.891197 0.941637 0.960129
SAS システム 6
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
Scoring Coefficients Estimated by Regression
Squared Multiple Correlations of the Variables with each Factor
FACTOR1 FACTOR2 FACTOR3
1.000000 1.000000 1.000000
SAS システム 7
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
Standardized Scoring Coefficients
FACTOR1 FACTOR2 FACTOR3
X01 0.10946 -0.33626 0.22279 M(-15)
X02 0.12680 -0.18069 0.38691 M(16-20)
X03 0.12374 0.12531 0.50920 M(21-30)
X04 0.11455 0.27018 0.43215 M(31-40)
X05 0.09978 0.38212 0.14670 M(41-)
X06 0.11811 -0.30729 -0.09636 F(-15)
X07 0.13175 -0.19038 -0.19733 F(16-20)
X08 0.13313 -0.02434 -0.33282 F(21-30)
X09 0.13227 0.12383 -0.37099 F(31-40)
X10 0.11609 0.20136 -0.60162 F(41-)
SAS システム 8
19:05 Wednesday, July 18, 2007
プロット : FACTOR1*FACTOR2. 凡例: A = 1 OBS, B = 2 OBS, ...
5 + |
| |
FACTOR1 | |
| A A |A B A
| A A A AA BBA AAADA BB A AA A A A
0 +----A-------A----AAB--AAA----ACA---BABAAA-B--AAAAA--AA-A--A--A-
| A AA A A A A A A A | ABAAABB BA A A A
| A A A | A A
| | A
| |
-5 + |
--+-----------+-----------+-----------+-----------+-----------+-
-3 -2 -1 0 1 2
FACTOR2
SAS システム 9
19:05 Wednesday, July 18, 2007
プロット : FACTOR2*FACTOR3. 凡例: A = 1 OBS, B = 2 OBS, ...
FACTOR2 | |
2.5 + |
| A A A A | AC A A A
| AA ABA ADABA AB| B A AA AA A
0.0 +---BA----AAAA-CBA--A-+-ECB-A------A----A--------A--------------
| A A BAA ABB AB AABAB
| B AA B AAAAA A A
-2.5 + | A
| |
| |
-5.0 + |
--+---------+---------+---------+---------+---------+---------+-
-2 -1 0 1 2 3 4
FACTOR3
/* Lesson 14-3 */
/* File Name = les1403.sas 07/19/07 */
data food;
infile 'food.dat';
input X01-X10;
label X01='M(-15)'
X02='M(16-20)'
X03='M(21-30)'
X04='M(31-40)'
X05='M(41-)'
X06='F(-15)'
X07='F(16-20)'
X08='F(21-30)'
X09='F(31-40)'
X10='F(41-)';
proc print data=food(obs=10);
run;
proc factor data=food nfactor=3 rotate=varimax out=fscore2;
var X01-X10; : 回転の指定
run; :
proc print data=fscore2;
run;
proc plot data=fscore2;
plot factor1*factor2/vref=0.0 href=0.0;
plot factor2*factor3/vref=0.0 href=0.0;
plot factor3*factor1/vref=0.0 href=0.0;
run;
SAS システム 6
19:05 Wednesday, July 18, 2007
Rotation Method: Varimax
Orthogonal Transformation Matrix
1 2 3
1 0.65751 0.53576 0.52976
2 -0.73452 0.61238 0.29234
3 0.16779 0.58134 -0.79617
SAS システム 7
19:05 Wednesday, July 18, 2007
Rotation Method: Varimax
Rotated Factor Pattern
FACTOR1 FACTOR2 FACTOR3
X01 0.95480 0.13534 0.08893 M(-15)
X02 0.85209 0.43859 0.13319 M(16-20)
X03 0.45782 0.81121 0.20628 M(21-30)
X04 0.21933 0.90009 0.29393 M(31-40)
X05 -0.02799 0.84163 0.46962 M(41-)
X06 0.91574 0.05827 0.32684 F(-15)
X07 0.81289 0.19001 0.49704 F(16-20)
X08 0.58706 0.31477 0.66894 F(21-30)
X09 0.38662 0.45477 0.76508 F(31-40)
X10 0.18442 0.37804 0.88499 F(41-)
SAS システム 8
19:05 Wednesday, July 18, 2007
Rotation Method: Varimax
Variance explained by each factor
FACTOR1 FACTOR2 FACTOR3
3.923686 2.875550 2.545044
Final Communality Estimates: Total = 9.344279
X01 X02 X03 X04 X05
0.937870 0.936157 0.910210 0.944673 0.929662
X06 X07 X08 X09 X10
0.948805 0.943939 0.891197 0.941637 0.960129
SAS システム 9
19:05 Wednesday, July 18, 2007
Rotation Method: Varimax
Scoring Coefficients Estimated by Regression
Squared Multiple Correlations of the Variables with each Factor
FACTOR1 FACTOR2 FACTOR3
1.000000 1.000000 1.000000
SAS システム 10
19:05 Wednesday, July 18, 2007
Rotation Method: Varimax
Standardized Scoring Coefficients
FACTOR1 FACTOR2 FACTOR3
X01 0.35634 -0.01776 -0.21769 M(-15)
X02 0.28101 0.18221 -0.29369 M(16-20)
X03 0.07475 0.43906 -0.30323 M(21-30)
X04 -0.05062 0.47805 -0.20440 M(31-40)
X05 -0.19046 0.37274 0.04777 M(41-)
X06 0.28720 -0.18091 0.04945 F(-15)
X07 0.19335 -0.16071 0.17125 F(16-20)
X08 0.04957 -0.13707 0.32839 F(21-30)
X09 -0.06623 -0.06897 0.40164 F(31-40)
X10 -0.17252 -0.16424 0.59935 F(41-)
SAS システム 11
19:05 Wednesday, July 18, 2007
OBS X01 X02 X03 X04 X05 X06 X07 X08
1 7.69 7.31 7.47 7.76 7.87 7.51 7.24 7.70
2 6.59 5.56 6.21 6.04 5.81 6.64 6.11 6.53
3 4.55 4.18 4.36 4.25 4.53 4.60 3.66 4.04
4 6.78 6.11 6.30 5.98 5.56 6.37 6.29 5.43
5 6.47 6.24 6.02 5.42 5.88 6.00 5.60 4.60
6 6.96 6.81 6.91 6.48 6.23 7.09 7.27 7.13
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
1 7.91 7.95 0.66848 1.82089 1.58151
2 6.44 6.64 0.16753 -0.19985 1.19223
3 3.68 4.43 -1.03317 -1.44074 -0.47196
4 5.32 5.28 0.63828 0.22675 -0.50040
5 5.40 5.95 0.18212 0.09192 -0.20819
6 6.86 7.36 0.74098 0.36705 1.34820
SAS システム 12
19:05 Wednesday, July 18, 2007
OBS X01 X02 X03 X04 X05 X06 X07 X08
7 6.57 5.70 5.89 5.16 5.30 6.07 5.56 4.50
8 7.32 6.95 6.02 4.98 4.88 6.82 6.40 5.53
9 6.51 6.15 5.51 4.68 4.16 5.17 4.81 4.70
10 6.86 6.05 5.85 6.14 6.75 6.71 5.39 5.42
11 7.04 6.03 6.53 6.02 6.68 6.78 5.91 6.26
12 6.59 6.30 6.29 5.94 6.10 5.93 5.52 5.35
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
7 4.92 5.33 0.32212 -0.32353 -0.54867
8 5.61 5.33 1.29399 -0.70772 -0.34096
9 4.86 3.82 0.58563 -0.74996 -1.38927
10 6.03 6.59 0.02082 0.39858 0.55099
11 5.76 5.95 0.40333 0.58990 0.17654
12 5.45 5.85 0.19777 0.54869 -0.27747
SAS システム 13
19:05 Wednesday, July 18, 2007
OBS X01 X02 X03 X04 X05 X06 X07 X08
13 5.93 4.76 5.09 5.51 5.79 5.49 4.97 4.69
14 7.00 6.31 6.82 6.26 5.26 6.69 6.27 5.94
15 6.63 5.47 5.54 4.88 4.70 5.89 4.64 4.43
16 6.56 6.57 5.74 4.76 4.39 6.56 6.29 5.61
17 5.80 5.44 4.75 4.69 4.65 5.23 4.83 4.66
18 6.39 6.14 6.21 5.48 5.40 6.32 6.19 6.44
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
13 5.30 5.61 -0.59891 -0.44433 0.31937
14 5.78 5.26 0.91545 0.42234 -0.53556
15 4.00 3.98 0.46237 -0.53286 -1.57500
16 5.22 4.72 1.11088 -1.07750 -0.45395
17 4.72 4.98 -0.13938 -1.22229 -0.20671
18 5.49 5.49 0.56235 -0.28372 0.15357
SAS システム 14
19:05 Wednesday, July 18, 2007
OBS X01 X02 X03 X04 X05 X06 X07 X08
19 7.19 6.66 6.58 5.33 5.03 7.13 7.19 6.62
20 5.76 6.63 7.02 7.37 7.27 5.93 5.89 6.70
21 5.74 5.71 5.93 6.12 6.24 5.42 5.69 6.10
22 5.52 5.28 5.17 4.69 4.87 4.86 4.66 4.10
23 4.89 4.75 5.02 5.14 4.65 4.96 4.17 3.89
24 6.46 6.88 6.93 6.74 6.52 6.14 6.64 5.81
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
19 5.78 5.23 1.42714 -0.49423 -0.05168
20 6.82 6.97 -0.35623 1.77580 0.83460
21 6.25 6.45 -0.47556 0.23363 0.99794
22 4.62 4.10 -0.26665 -0.65259 -0.96309
23 4.61 4.01 -0.63574 -0.58237 -0.93949
24 6.14 6.59 0.33341 1.19569 0.15960
SAS システム 15
19:05 Wednesday, July 18, 2007
OBS X01 X02 X03 X04 X05 X06 X07 X08
25 6.42 6.79 7.26 6.68 6.48 6.32 5.85 5.14
26 5.89 6.51 6.46 6.31 5.76 5.54 4.38 4.51
27 4.16 4.73 5.75 5.79 5.29 3.35 4.16 4.33
28 5.99 6.10 5.84 5.49 4.82 5.04 4.44 4.09
29 6.97 5.84 5.47 4.58 4.75 6.71 5.90 5.08
30 7.15 6.76 6.56 5.73 5.13 6.99 6.27 5.75
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
25 6.21 5.55 0.37449 1.61803 -0.74503
26 5.75 5.11 -0.09504 1.13524 -1.07720
27 5.49 4.72 -1.46393 0.43161 -0.39411
28 5.01 4.31 0.06458 0.18701 -1.46831
29 4.87 5.01 0.86305 -1.21930 -0.35051
30 5.58 4.98 1.22856 0.06522 -0.75458
≪略≫
SAS システム 25
19:05 Wednesday, July 18, 2007
OBS X01 X02 X03 X04 X05 X06 X07 X08
85 6.96 5.61 4.34 4.28 4.15 6.46 5.70 5.31
86 5.71 5.58 5.46 5.10 5.57 5.46 5.94 5.19
87 5.30 5.88 5.35 5.24 5.68 5.17 5.91 5.06
88 7.09 6.39 5.60 6.18 5.81 7.12 6.69 5.96
89 6.93 6.73 5.60 5.63 6.13 7.13 6.66 6.42
90 7.46 6.19 5.42 4.70 3.68 7.33 6.73 5.58
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
85 4.77 4.19 0.89484 -2.11006 -0.27929
86 5.78 6.23 -0.28762 -0.71826 0.87305
87 5.56 6.10 -0.40623 -0.50420 0.66559
88 6.28 6.60 0.66657 -0.37147 0.91228
89 6.44 6.50 0.69692 -0.51150 1.12494
90 4.18 3.39 1.90587 -1.55808 -1.44320
SAS システム 26
19:05 Wednesday, July 18, 2007
OBS X01 X02 X03 X04 X05 X06 X07 X08
91 6.38 5.28 5.07 3.96 4.25 6.28 5.21 4.65
92 7.41 6.97 5.91 4.96 4.86 7.19 6.72 5.98
93 7.77 6.47 5.71 5.26 4.91 7.72 7.03 6.42
94 7.96 7.13 6.36 6.18 5.71 7.92 7.59 6.87
95 7.62 6.48 5.75 4.69 4.65 7.82 7.17 6.31
96 8.44 7.52 6.82 6.88 6.05 8.48 8.33 7.25
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
91 4.49 4.64 0.50096 -1.77073 -0.41813
92 5.53 5.52 1.45131 -0.95522 -0.05731
93 5.52 5.46 1.57106 -1.13765 0.18885
94 6.77 6.43 1.56707 -0.24567 0.79587
95 5.53 5.58 1.64304 -1.55742 0.37033
96 6.83 6.55 1.98060 0.32279 0.62116
SAS システム 27
19:05 Wednesday, July 18, 2007
OBS X01 X02 X03 X04 X05 X06 X07 X08
97 7.81 7.31 6.93 7.42 6.60 8.10 7.56 7.79
98 8.29 7.45 7.00 6.76 6.69 8.14 7.09 6.83
99 7.20 6.42 6.23 5.92 5.91 6.98 6.44 6.04
100 7.62 7.33 6.91 6.90 6.47 7.33 6.69 7.23
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
97 7.82 7.67 1.18227 0.72902 1.67725
98 6.83 7.13 1.41828 0.79855 0.65451
99 6.14 6.02 0.78541 0.01100 0.33576
100 6.79 6.70 1.06526 0.90338 0.58077
SAS システム 28
19:05 Wednesday, July 18, 2007
プロット : FACTOR1*FACTOR2. 凡例: A = 1 OBS, B = 2 OBS, ...
2 + A | A
| A AA A A | A A
FACTOR1 | A AA |A A A A A
| A B AA AB B C A A A A A
| A A A B | A AA A A A
0 +-----------------A-A---------B-+AA-AA--A-AA--------------------
| A B AA AA| A A A A A
| A AA A|A C AA
| A A AA A AA B | A A A
| A A | AA A
-2 + A A A| A
--+---------+---------+---------+---------+---------+---------+-
-3 -2 -1 0 1 2 3
FACTOR2
SAS システム 29
19:05 Wednesday, July 18, 2007
プロット : FACTOR2*FACTOR3. 凡例: A = 1 OBS, B = 2 OBS, ...
FACTOR2 | |
4 + |
| |
| A A |
2 + A | A A
| A AA A | AAA A A A
| A A A A A AAA |ABB BAB A B AA
0 +--------------------------A------B--D--AA+ACB-AAABAB-A---------
| A A AAA A C| BA BA C A A
| A A CA A | A B AB A
-2 + A A AA |
--+---------+---------+---------+---------+---------+---------+-
-4 -3 -2 -1 0 1 2
FACTOR3
SAS システム 30
19:05 Wednesday, July 18, 2007
プロット : FACTOR3*FACTOR1. 凡例: A = 1 OBS, B = 2 OBS, ...
FACTOR3 | |
2.5 + |
| A B |A BA A
| A BABA A C ABBAA AAA AB A A A A
0.0 +-------------A-----BA-A-AAA---A--A-A-+-BAAC-AABAA-A--AC-AA-----
| A AA A A A B B| B A ABBB A AA
| A A |A AA A
-2.5 + A A | A
| A |
| |
-5.0 + |
--+-----------+-----------+-----------+-----------+-----------+-
-3 -2 -1 0 1 2
FACTOR1
/* Lesson 14-4 */
/* File Name = les1404.sas 07/19/07 */
data hobby;
infile 'syumi.dat';
input code $ X1-X6;
label X1='M(-29)'
X2='M(30-49)'
X3='M(50-)'
X4='F(-29)'
X5='F(30-49)'
X6='F(50-)';
proc print data=hobby(obs=10);
run;
proc factor data=hobby nfactor=2 out=fscore;
var X1-X6;
run;
proc plot data=fscore; : 回転前
plot factor1*factor2=code/vref=0.0 href=0.0; : コード化した記号
run; :
proc factor data=hobby nfactor=2 rotate=varimax out=fscore2;
var X1-X6;
run;
proc plot data=fscore2; : 回転後
plot factor1*factor2=code/vref=0.0 href=0.0; : コード化した記号
run; :
SAS システム 1
19:05 Wednesday, July 18, 2007
OBS CODE X1 X2 X3 X4 X5 X6
1 A 4.00 4.25 3.83 4.50 4.67 4.00
2 B 4.17 3.89 4.00 4.50 4.17 3.75
3 C 3.83 3.44 2.83 3.57 3.17 1.50
4 D 2.83 4.22 3.83 3.71 3.00 2.25
5 E 4.17 4.11 3.83 3.57 4.00 3.75
6 F 2.33 3.56 3.33 2.93 2.83 2.75
7 G 1.83 2.44 2.33 3.71 3.83 3.75
8 H 2.50 1.89 2.00 4.21 3.17 3.75
9 I 2.00 1.44 2.00 4.07 3.33 3.50
10 J 4.00 3.33 3.33 3.00 3.17 2.25
SAS システム 2
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 6 Average = 1
1 2 3
Eigenvalue 2.7435 1.7477 0.7451
Difference 0.9958 1.0027 0.3571
Proportion 0.4573 0.2913 0.1242
Cumulative 0.4573 0.7485 0.8727
4 5 6
Eigenvalue 0.3879 0.2263 0.1495
Difference 0.1616 0.0768
Proportion 0.0647 0.0377 0.0249
Cumulative 0.9374 0.9751 1.0000
SAS システム 3
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
2 factors will be retained by the NFACTOR criterion.
Factor Pattern
FACTOR1 FACTOR2
X1 0.52708 0.63297 M(-29)
X2 0.59628 0.64623 M(30-49)
X3 0.64192 0.47370 M(50-)
X4 0.82757 -0.35514 F(-29)
X5 0.79607 -0.43033 F(30-49)
X6 0.61604 -0.62750 F(50-)
SAS システム 4
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
Variance explained by each factor
FACTOR1 FACTOR2
2.743514 1.747721
Final Communality Estimates: Total = 4.491236
X1 X2 X3 X4 X5 X6
0.678467 0.773166 0.636447 0.810993 0.818906 0.773257
SAS システム 5
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
Scoring Coefficients Estimated by Regression
Squared Multiple Correlations of the Variables with each Factor
FACTOR1 FACTOR2
1.000000 1.000000
SAS システム 6
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
Standardized Scoring Coefficients
FACTOR1 FACTOR2
X1 0.19212 0.36217 M(-29)
X2 0.21734 0.36976 M(30-49)
X3 0.23398 0.27104 M(50-)
X4 0.30164 -0.20320 F(-29)
X5 0.29016 -0.24622 F(30-49)
X6 0.22454 -0.35904 F(50-)
SAS システム 7
19:05 Wednesday, July 18, 2007
プロット : FACTOR1*FACTOR2. 使用するプロット文字: CODE の値.
(NOTE: 1 オブザベーションを表示していません.)
2 + A B
| | Z E
FACTOR1 | R |
| |
| 3 Q M | DL O
0 +--------------HG------------S-----2--+--F-------C--------------
| I K P | V N
| | U W
| 1|Y
| T X
-2 + 4 |
--+-----------+-----------+-----------+-----------+-----------+-
-3 -2 -1 0 1 2
FACTOR2
SAS システム 8
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 6 Average = 1
1 2 3
Eigenvalue 2.7435 1.7477 0.7451
Difference 0.9958 1.0027 0.3571
Proportion 0.4573 0.2913 0.1242
Cumulative 0.4573 0.7485 0.8727
4 5 6
Eigenvalue 0.3879 0.2263 0.1495
Difference 0.1616 0.0768
Proportion 0.0647 0.0377 0.0249
Cumulative 0.9374 0.9751 1.0000
SAS システム 9
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
2 factors will be retained by the NFACTOR criterion.
Factor Pattern
FACTOR1 FACTOR2
X1 0.52708 0.63297 M(-29)
X2 0.59628 0.64623 M(30-49)
X3 0.64192 0.47370 M(50-)
X4 0.82757 -0.35514 F(-29)
X5 0.79607 -0.43033 F(30-49)
X6 0.61604 -0.62750 F(50-)
SAS システム 10
19:05 Wednesday, July 18, 2007
Initial Factor Method: Principal Components
Variance explained by each factor
FACTOR1 FACTOR2
2.743514 1.747721
Final Communality Estimates: Total = 4.491236
X1 X2 X3 X4 X5 X6
0.678467 0.773166 0.636447 0.810993 0.818906 0.773257
SAS システム 11
19:05 Wednesday, July 18, 2007
Rotation Method: Varimax
Orthogonal Transformation Matrix
1 2
1 0.77751 0.62886
2 -0.62886 0.77751
SAS システム 12
19:05 Wednesday, July 18, 2007
Rotation Method: Varimax
Rotated Factor Pattern
FACTOR1 FACTOR2
X1 0.01176 0.82361 M(-29)
X2 0.05723 0.87743 M(30-49)
X3 0.20121 0.77199 M(50-)
X4 0.86678 0.24430 F(-29)
X5 0.88957 0.16603 F(30-49)
X6 0.87359 -0.10049 F(50-)
Variance explained by each factor
FACTOR1 FACTOR2
2.349707 2.141529
SAS システム 13
19:05 Wednesday, July 18, 2007
Rotation Method: Varimax
Final Communality Estimates: Total = 4.491236
X1 X2 X3 X4 X5 X6
0.678467 0.773166 0.636447 0.810993 0.818906 0.773257
Scoring Coefficients Estimated by Regression
Squared Multiple Correlations of the Variables with each Factor
FACTOR1 FACTOR2
1.000000 1.000000
SAS システム 14
19:05 Wednesday, July 18, 2007
Rotation Method: Varimax
Standardized Scoring Coefficients
FACTOR1 FACTOR2
X1 -0.07838 0.40241 M(-29)
X2 -0.06354 0.42417 M(30-49)
X3 0.01147 0.35788 M(50-)
X4 0.36232 0.03170 F(-29)
X5 0.38045 -0.00897 F(30-49)
X6 0.40037 -0.13795 F(50-)
SAS システム 15
19:05 Wednesday, July 18, 2007
プロット : FACTOR1*FACTOR2. 使用するプロット文字: CODE の値.
2 + |
| | A
FACTOR1 | I H G 3 | R ZB
| Q | E
| K S |M
0 +---------------------P-2--+------------D-------------
| |F CJ L O
| Y | V N
| 4 1 T | U
| X | W
-2 + |
---+-----------+-----------+-----------+-----------+--
-2 -1 0 1 2
FACTOR2