/* Lesson 12-1 */
/* File Name = les1201.sas 07/07/05 */
data gakusei;
infile 'all05a.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
proc print data=gakusei(obs=10);
run;
proc plot data=gakusei; : 散布図
plot shintyou*taijyuu; : 元の変量のプロット
run; :
proc princomp cov data=gakusei out=outprin; : 主成分分析(分散共分散行列)
var shintyou taijyuu; : 2変量
run; :
proc print data=outprin(obs=15); : 結果の出力
run; :
proc plot data=outprin; : 散布図
plot prin2*prin1/vref=0 href=0; : 主成分得点のプロット
run; :
proc sort data=outprin; : 説明のためにソートしてみる
by prin1; : 第一主成分で
run; :
proc print data=outprin; : 体重がややが効いていることの確認
run; :
SAS システム 2
23:15 Wednesday, July 6, 2005
プロット : SHINTYOU*TAIJYUU. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 46 オブザベーションが欠損値です.)
SHINTYOU |
200 +
|
| B A
180 + A BDCFDDBEA B B A A A
| BAFDKHTOHHCFECB BA
| AEAGIIFECBCEAA AA A A
160 + ADCFDIDDBABB
| A ECAEDDA A A
| A BAA
140 +
---+-----------+-----------+-----------+-----------+--
20 40 60 80 100
TAIJYUU
SAS システム 3
23:15 Wednesday, July 6, 2005
Principal Component Analysis
282 Observations
2 Variables
Simple Statistics
SHINTYOU TAIJYUU
Mean 168.4446809 58.56382979
StD 8.1382706 9.36408887
SAS システム 4
23:15 Wednesday, July 6, 2005
Principal Component Analysis
Covariance Matrix
SHINTYOU TAIJYUU
SHINTYOU 66.23144847 54.25158628
TAIJYUU 54.25158628 87.68616037
Total Variance = 153.91760884
Eigenvalues of the Covariance Matrix
Eigenvalue Difference Proportion Cumulative
PRIN1 132.261 110.604 0.859296 0.85930
PRIN2 21.657 . 0.140704 1.00000
SAS システム 5
23:15 Wednesday, July 6, 2005
Principal Component Analysis
Eigenvectors
PRIN1 PRIN2
SHINTYOU 0.634832 0.772651
TAIJYUU 0.772651 -.634832
SAS システム 6
23:15 Wednesday, July 6, 2005
S
H T K C
I A J O A T
N I K I D R S P P
T J Y T U R U R R
O S Y Y O A K Y U I I
B E O U U K A E W N N
S X U U I U I R A 1 2
1 F 145.0 38.0 . J 10000 . -30.7721 -5.05998
2 F 146.7 41.0 85 J 10000 Vodafone 6000 -27.3749 -5.65097
3 F 148.0 42.0 . J 50000 . -25.7770 -5.28135
<中略>
SAS システム 8
23:15 Wednesday, July 6, 2005
プロット : PRIN2*PRIN1. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 46 オブザベーションが欠損値です.)
20 + |
| |
PRIN2 | A | A
| A BCABABBCCA AA
| A BBABDADEBFGDBJGC DE A
0 +-------------B-DAB-FC-JACEGEEFDKCACFBA-EAA-----A---------
| A AAABA CBCDAABCA C C BEEB FD A AA
| AA B A A A B|BA A A AAA A
| A | B
| | A A
-20 + | A A
---+------------+------------+------------+------------+--
-40 -20 0 20 40
PRIN1
SAS システム 9
23:15 Wednesday, July 6, 2005
S
H T K C
I A J O A T
N I K I D R S P P
T J Y T U R U R R
O S Y Y O A K Y U I I
B E O U U K A E W N N
S X U U I U I R A 1 2
1 F 148.9 . . J 60000 . . .
2 F 153.0 . . G 120000 DoCoMo 200 . .
3 F 155.0 . . J 20000 . . .
<中略>
SAS システム 45
23:15 Wednesday, July 6, 2005
S
H T K C
I A J O A T
N I K I D R S P P
T J Y T U R U R R
O S Y Y O A K Y U I I
B E O U U K A E W N N
S X U U I U I R A 1 2
289 M 180.0 64.0 90 J 35000 . 11.5359 5.4772
290 M 180.0 64.0 90 G 60000 au 10000 11.5359 5.4772
291 M 168.0 74.0 . G 120000 DDIp 15000 11.6445 -10.1430
292 M 179.0 65.0 . J 0 . 11.6738 4.0697
293 M 173.8 69.6 90 J 30000 DoCoMo 13000 11.9268 -2.8683
294 M 177.0 67.0 . 4000 DoCoMo 8000 11.9494 1.2547
295 M 180.0 65.0 88 J 30000 . 12.3086 4.8423
296 M 180.0 65.0 . G 100000 . 12.3086 4.8423
297 M 168.0 75.0 . G 150000 . 12.4171 -10.7778
298 M 179.0 66.0 . 30000 . 12.4464 3.4349
299 M 173.0 71.0 100 G 0 . 12.5007 -4.3752
300 M 178.0 67.0 . J 0 . 12.5842 2.0274
301 M 172.0 72.0 89 G 150000 . 12.6385 -5.7827
302 M 177.0 68.0 . G 80000 . 12.7220 0.6199
303 M 182.0 64.0 . G 0 . 12.8056 7.0225
304 M 165.0 78.0 . G 0 2098 12.8306 -15.0002
305 M 170.0 74.0 90 J 0 . 12.9141 -8.59765
306 M 175.0 70.0 95 G 50000 8000 12.9977 -2.19507
307 M 178.0 68.0 . J 100000 DoCoMo 4000 13.3569 1.39254
308 M 175.0 74.0 . J 0 . 16.0883 -4.73440
309 M 180.0 70.0 94 G 70000 au 5000 16.1718 1.66818
310 M 180.0 70.0 . J 40000 au 4000 16.1718 1.66818
311 M 180.0 70.0 . . . 16.1718 1.66818
312 M 180.0 70.0 . J 40000 DoCoMo 6500 16.1718 1.66818
313 M 178.7 71.2 95 0 . 16.2737 -0.0981
314 M 173.5 76.5 . G 100000 . 17.0677 -7.4805
315 M 184.0 68.0 85 30000 . 17.1659 6.0284
316 M 182.0 70.0 90 G 100000 . 17.4415 3.2135
317 M 185.0 68.0 93 J 0 . 17.8007 6.8011
318 M 175.0 77.0 95 G 130000 . 18.4062 -6.6389
319 M 179.1 74.2 . 0 au 4000 18.8456 -1.6935
320 M 176.5 78.0 96 J 10000 . 20.1311 -6.1147
321 M 177.0 78.0 . J 40000 . 20.4486 -5.7284
322 M 181.5 74.5 . G 120000 au 3000 20.6010 -0.0296
323 M 178.0 78.0 110 G 50000 . 21.0834 -4.9558
324 M 169.3 88.5 94 J 0 . 23.6732 -18.3436
325 M 186.0 82.0 . J 0 . 29.2526 -1.3139
326 M 182.0 90.0 100 J 40000 . 32.8945 -9.4831
327 M 178.0 95.0 . 1000 No . 34.2184 -15.7479
328 M 178.0 100.0 112 G 60000 . 38.0817 -18.9221
/* Lesson 12-2 */
/* File Name = les1202.sas 07/07/05 */
data gakusei;
infile 'all05a.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
proc print data=gakusei(obs=10);
run;
proc princomp cov data=gakusei out=outprin; : 主成分分析(分散共分散行列)
var shintyou taijyuu kyoui; : 3変量
run; :
proc print data=outprin(obs=15); : 結果の出力
run; :
proc plot data=outprin; : 散布図
plot prin2*prin1/vref=0 href=0; : 主成分得点のプロット
plot prin3*prin2/vref=0 href=0; :
plot prin3*prin1/vref=0 href=0; :
run; :
SAS システム 3
23:16 Wednesday, July 6, 2005
Principal Component Analysis
104 Observations
3 Variables
Simple Statistics
SHINTYOU TAIJYUU KYOUI
Mean 167.2798077 58.69615385 86.49038462
StD 8.8277737 10.85357015 7.64249132
SAS システム 4
23:16 Wednesday, July 6, 2005
Principal Component Analysis
Covariance Matrix
SHINTYOU TAIJYUU KYOUI
SHINTYOU 77.9295883 70.4536109 25.3187360
TAIJYUU 70.4536109 117.7999851 54.5154966
KYOUI 25.3187360 54.5154966 58.4076736
SAS システム 5
23:16 Wednesday, July 6, 2005
Principal Component Analysis
Total Variance = 254.13724701
Eigenvalues of the Covariance Matrix
Eigenvalue Difference Proportion Cumulative
PRIN1 196.291 154.890 0.772382 0.77238
PRIN2 41.401 24.956 0.162909 0.93529
PRIN3 16.445 . 0.064709 1.00000
SAS システム 6
23:16 Wednesday, July 6, 2005
Principal Component Analysis
Eigenvectors
PRIN1 PRIN2 PRIN3
SHINTYOU 0.530874 -.657814 0.534279
TAIJYUU 0.750236 0.071616 -.657280
KYOUI 0.394105 0.749768 0.531535
SAS システム 7
23:16 Wednesday, July 6, 2005
S
H T K C
I A J O A T
N I K I D R S P P P
T J Y T U R U R R R
O S Y Y O A K Y U I I I
B E O U U K A E W N N N
S X U U I U I R A 1 2 3
1 F 145.0 38.0 . J 10000 . . . .
2 F 146.7 41.0 85 J 10000 Vodafone 6000 -24.7889 11.1529 -0.15621
3 F 148.0 42.0 . J 50000 . . . .
4 F 148.0 43.0 80 J 50000 DoCoMo 4000 -24.5689 6.6921 -3.43388
5 F 148.9 . . J 60000 . . . .
6 F 149.0 45.0 . G 60000 . . . .
7 F 150.0 46.0 86 40000 . -18.8918 10.0900 -1.14796
8 F 151.0 50.0 . G 60000 J-PHONE . . . .
9 F 151.7 41.5 80 J 35000 . -23.7300 4.1508 -0.47113
10 F 152.0 35.0 77 J 60000 DoCoMo 2000 -29.6296 1.2387 2.36687
11 F 152.0 43.0 . J 20000 au 3500 . . .
12 F 152.0 44.0 . 45000 DoCoMo 4000 . . .
13 F 153.0 41.0 . J 125000 No . . . .
14 F 153.0 42.0 . G 0 Vodafone 1000 . . .
15 F 153.0 46.5 87 G 10000 . -16.5299 8.9021 0.65777
SAS システム 9
23:16 Wednesday, July 6, 2005
プロット : PRIN2*PRIN1. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 224 オブザベーションが欠損値です.)
PRIN2 | |
20 + |
| A A A | A A A A
| AA ABABBB AC | A AC A A
0 +--------A----A-AABCBCD-CAAACADD-BBBAAB-AA-------A----------------
| A A A B AAA BBAD B
| A |AAA A
-20 + |
| A |
| |
-40 + |
---+-----------+-----------+-----------+-----------+-----------+--
-40 -20 0 20 40 60
PRIN1
SAS システム 10
23:16 Wednesday, July 6, 2005
プロット : PRIN3*PRIN2. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 224 オブザベーションが欠損値です.)
PRIN3 | |
10 + |
| A A AB A| A A A
| A A A AA D EBCD AABD A A
0 +----------------------A---A-A--B--A--EACBCBCBA-A-AAA-------------
| A A A A A CC CBA AA
| A AA A | AA A A
-10 + | A
| A | A
| |
-20 + |
---+-----------+-----------+-----------+-----------+-----------+--
-30 -20 -10 0 10 20
PRIN2
SAS システム 11
23:16 Wednesday, July 6, 2005
プロット : PRIN3*PRIN1. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 224 オブザベーションが欠損値です.)
PRIN3 | |
10 + |
| A |B A C A A
| A A AAACA BB |ABDDBAA A D
0 +-----------AA--BCACCAC-AAAABB-CA-A--A----------------------------
| A A AA AA BA | B BBB AA
| A AA A A A A A
-10 + A |
| A | A
| |
-20 + |
---+-----------+-----------+-----------+-----------+-----------+--
-40 -20 0 20 40 60
PRIN1
/* Lesson 12-3 */
/* File Name = les1203.sas 07/07/05 */
data gakusei;
infile 'all05a.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
proc print data=gakusei(obs=10);
run; :
proc princomp data=gakusei out=outprin; : 相関係数を使って
var shintyou taijyuu kyoui; :
run; :
proc print data=outprin(obs=15);
run;
proc plot data=outprin;
plot prin2*prin1/vref=0 href=0;
plot prin3*prin2/vref=0 href=0;
plot prin3*prin1/vref=0 href=0;
run;
SAS システム 3
23:16 Wednesday, July 6, 2005
Principal Component Analysis
104 Observations
3 Variables
Simple Statistics
SHINTYOU TAIJYUU KYOUI
Mean 167.2798077 58.69615385 86.49038462
StD 8.8277737 10.85357015 7.64249132
SAS システム 4
23:16 Wednesday, July 6, 2005
Principal Component Analysis
Correlation Matrix
SHINTYOU TAIJYUU KYOUI
SHINTYOU 1.0000 0.7353 0.3753
TAIJYUU 0.7353 1.0000 0.6572
KYOUI 0.3753 0.6572 1.0000
SAS システム 5
23:16 Wednesday, July 6, 2005
Principal Component Analysis
Eigenvalues of the Correlation Matrix
Eigenvalue Difference Proportion Cumulative
PRIN1 2.19083 1.56282 0.730277 0.73028
PRIN2 0.62802 0.44686 0.209338 0.93962
PRIN3 0.18115 . 0.060385 1.00000
SAS システム 6
23:16 Wednesday, July 6, 2005
Principal Component Analysis
Eigenvectors
PRIN1 PRIN2 PRIN3
SHINTYOU 0.560340 -.648358 0.515414
TAIJYUU 0.637705 -.059382 -.767989
KYOUI 0.528537 0.759017 0.380187
/* Lesson 13-1 */
/* File Name = les1301.sas 07/14/05 */
data food; :
infile 'food.dat'; : ファイルの読み込み
input X01-X10; : 変量リスト、連続的に
label X01='M(-15)' : 各変量に解りやすい名前を付ける
X02='M(16-20)' : M : 男性
X03='M(21-30)' : F : 女性
X04='M(31-40)' : ()内 : 年齢
X05='M(41-)' :
X06='F(-15)' :
X07='F(16-20)' :
X08='F(21-30)' :
X09='F(31-40)' :
X10='F(41-)'; :
:
proc print data=food(obs=10); : データの表示
run; :
proc factor data=food; : オプションを付けないと主成分分析
var X01-X10; : 解析に使う変量リスト
run; :
SAS システム 1
20:31 Wednesday, July 13, 2005
OBS X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
1 7.69 7.31 7.47 7.76 7.87 7.51 7.24 7.70 7.91 7.95
2 6.59 5.56 6.21 6.04 5.81 6.64 6.11 6.53 6.44 6.64
3 4.55 4.18 4.36 4.25 4.53 4.60 3.66 4.04 3.68 4.43
4 6.78 6.11 6.30 5.98 5.56 6.37 6.29 5.43 5.32 5.28
SAS システム 2
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 10 Average = 1
1 2 3 4 5
Eigenvalue 6.8280 1.7619 0.7545 0.2624 0.1216
Difference 5.0661 1.0074 0.4921 0.1408 0.0236
Proportion 0.6828 0.1762 0.0754 0.0262 0.0122
Cumulative 0.6828 0.8590 0.9344 0.9607 0.9728
6 7 8 9 10
Eigenvalue 0.0980 0.0721 0.0441 0.0358 0.0219
Difference 0.0259 0.0280 0.0083 0.0139
Proportion 0.0098 0.0072 0.0044 0.0036 0.0022
Cumulative 0.9826 0.9898 0.9942 0.9978 1.0000
SAS システム 3
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
2 factors will be retained by the MINEIGEN criterion.
SAS システム 4
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
Factor Pattern
FACTOR1 FACTOR2
X01 0.74741 -0.59244 M(-15)
X02 0.86579 -0.31836 M(16-20)
X03 0.84491 0.22079 M(21-30)
X04 0.78216 0.47602 M(31-40)
X05 0.68129 0.67325 M(41-)
X06 0.80647 -0.54140 F(-15)
X07 0.89959 -0.33542 F(16-20)
X08 0.90901 -0.04289 F(21-30)
X09 0.90316 0.21817 F(31-40)
X10 0.79262 0.35477 F(41-)
SAS システム 5
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
Variance explained by each factor
FACTOR1 FACTOR2
6.827955 1.761873
Final Communality Estimates: Total = 8.589828
X01 X02 X03 X04 X05
0.909618 0.850950 0.762624 0.838371 0.917413
X06 X07 X08 X09 X10
0.943520 0.921775 0.828147 0.863298 0.754112
/* Lesson 13-2 */
/* File Name = les1302.sas 07/14/05 */
data food;
infile 'food.dat';
input X01-X10;
label X01='M(-15)'
X02='M(16-20)'
X03='M(21-30)'
X04='M(31-40)'
X05='M(41-)'
X06='F(-15)'
X07='F(16-20)'
X08='F(21-30)'
X09='F(31-40)'
X10='F(41-)';
proc print data=food(obs=10);
run; :
proc factor data=food nfactor=3 out=fscore; : 因子数3、出力の保存
var X01-X10; :
run; :
proc plot data=fscore; :
plot factor1*factor2/vref=0.0 href=0.0; : 第1因子 x 第2因子、軸
plot factor2*factor3/vref=0.0 href=0.0; : 第2因子 x 第3因子、軸
run; :
SAS システム 2
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 10 Average = 1
1 2 3 4 5
Eigenvalue 6.8280 1.7619 0.7545 0.2624 0.1216
Difference 5.0661 1.0074 0.4921 0.1408 0.0236
Proportion 0.6828 0.1762 0.0754 0.0262 0.0122
Cumulative 0.6828 0.8590 0.9344 0.9607 0.9728
6 7 8 9 10
Eigenvalue 0.0980 0.0721 0.0441 0.0358 0.0219
Difference 0.0259 0.0280 0.0083 0.0139
Proportion 0.0098 0.0072 0.0044 0.0036 0.0022
Cumulative 0.9826 0.9898 0.9942 0.9978 1.0000
SAS システム 3
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
3 factors will be retained by the NFACTOR criterion.
SAS システム 4
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
Factor Pattern
FACTOR1 FACTOR2 FACTOR3
X01 0.74741 -0.59244 0.16808 M(-15)
X02 0.86579 -0.31836 0.29190 M(16-20)
X03 0.84491 0.22079 0.38417 M(21-30)
X04 0.78216 0.47602 0.32604 M(31-40)
X05 0.68129 0.67325 0.11067 M(41-)
X06 0.80647 -0.54140 -0.07270 F(-15)
X07 0.89959 -0.33542 -0.14888 F(16-20)
X08 0.90901 -0.04289 -0.25110 F(21-30)
X09 0.90316 0.21817 -0.27989 F(31-40)
X10 0.79262 0.35477 -0.45389 F(41-)
SAS システム 5
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
Variance explained by each factor
FACTOR1 FACTOR2 FACTOR3
6.827955 1.761873 0.754451
Final Communality Estimates: Total = 9.344279
X01 X02 X03 X04 X05
0.937870 0.936157 0.910210 0.944673 0.929662
X06 X07 X08 X09 X10
0.948805 0.943939 0.891197 0.941637 0.960129
SAS システム 6
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
Scoring Coefficients Estimated by Regression
Squared Multiple Correlations of the Variables with each Factor
FACTOR1 FACTOR2 FACTOR3
1.000000 1.000000 1.000000
SAS システム 7
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
Standardized Scoring Coefficients
FACTOR1 FACTOR2 FACTOR3
X01 0.10946 -0.33626 0.22279 M(-15)
X02 0.12680 -0.18069 0.38691 M(16-20)
X03 0.12374 0.12531 0.50920 M(21-30)
X04 0.11455 0.27018 0.43215 M(31-40)
X05 0.09978 0.38212 0.14670 M(41-)
X06 0.11811 -0.30729 -0.09636 F(-15)
X07 0.13175 -0.19038 -0.19733 F(16-20)
X08 0.13313 -0.02434 -0.33282 F(21-30)
X09 0.13227 0.12383 -0.37099 F(31-40)
X10 0.11609 0.20136 -0.60162 F(41-)
SAS システム 8
20:31 Wednesday, July 13, 2005
プロット : FACTOR1*FACTOR2. 凡例: A = 1 OBS, B = 2 OBS, ...
5 + |
| |
FACTOR1 | |
| A A |A B A
| A A A AA BBA AAADA BB A AA A A A
0 +----A-------A----AAB--AAA----ACA---BABAAA-B--AAAAA--AA-A--A--A-
| A AA A A A A A A A | ABAAABB BA A A A
| A A A | A A
| | A
| |
-5 + |
--+-----------+-----------+-----------+-----------+-----------+-
-3 -2 -1 0 1 2
FACTOR2
SAS システム 9
20:31 Wednesday, July 13, 2005
プロット : FACTOR2*FACTOR3. 凡例: A = 1 OBS, B = 2 OBS, ...
FACTOR2 | |
2.5 + |
| A A A A | AC A A A
| AA ABA ADABA AB| B A AA AA A
0.0 +---BA----AAAA-CBA--A-+-ECB-A------A----A--------A--------------
| A A BAA ABB AB AABAB
| B AA B AAAAA A A
-2.5 + | A
| |
| |
-5.0 + |
--+---------+---------+---------+---------+---------+---------+-
-2 -1 0 1 2 3 4
FACTOR3
/* Lesson 13-3 */
/* File Name = les1303.sas 07/14/05 */
data food;
infile 'food.dat';
input X01-X10;
label X01='M(-15)'
X02='M(16-20)'
X03='M(21-30)'
X04='M(31-40)'
X05='M(41-)'
X06='F(-15)'
X07='F(16-20)'
X08='F(21-30)'
X09='F(31-40)'
X10='F(41-)';
proc print data=food(obs=10);
run;
proc factor data=food nfactor=3 rotate=varimax out=fscore2;
var X01-X10; : 回転の指定
run; :
proc print data=fscore2;
run;
proc plot data=fscore2;
plot factor1*factor2/vref=0.0 href=0.0;
plot factor2*factor3/vref=0.0 href=0.0;
plot factor3*factor1/vref=0.0 href=0.0;
run;
SAS システム 6
20:31 Wednesday, July 13, 2005
Rotation Method: Varimax
Orthogonal Transformation Matrix
1 2 3
1 0.65751 0.53576 0.52976
2 -0.73452 0.61238 0.29234
3 0.16779 0.58134 -0.79617
SAS システム 7
20:31 Wednesday, July 13, 2005
Rotation Method: Varimax
Rotated Factor Pattern
FACTOR1 FACTOR2 FACTOR3
X01 0.95480 0.13534 0.08893 M(-15)
X02 0.85209 0.43859 0.13319 M(16-20)
X03 0.45782 0.81121 0.20628 M(21-30)
X04 0.21933 0.90009 0.29393 M(31-40)
X05 -0.02799 0.84163 0.46962 M(41-)
X06 0.91574 0.05827 0.32684 F(-15)
X07 0.81289 0.19001 0.49704 F(16-20)
X08 0.58706 0.31477 0.66894 F(21-30)
X09 0.38662 0.45477 0.76508 F(31-40)
X10 0.18442 0.37804 0.88499 F(41-)
SAS システム 8
20:31 Wednesday, July 13, 2005
Rotation Method: Varimax
Variance explained by each factor
FACTOR1 FACTOR2 FACTOR3
3.923686 2.875550 2.545044
Final Communality Estimates: Total = 9.344279
X01 X02 X03 X04 X05
0.937870 0.936157 0.910210 0.944673 0.929662
X06 X07 X08 X09 X10
0.948805 0.943939 0.891197 0.941637 0.960129
SAS システム 9
20:31 Wednesday, July 13, 2005
Rotation Method: Varimax
Scoring Coefficients Estimated by Regression
Squared Multiple Correlations of the Variables with each Factor
FACTOR1 FACTOR2 FACTOR3
1.000000 1.000000 1.000000
SAS システム 10
20:31 Wednesday, July 13, 2005
Rotation Method: Varimax
Standardized Scoring Coefficients
FACTOR1 FACTOR2 FACTOR3
X01 0.35634 -0.01776 -0.21769 M(-15)
X02 0.28101 0.18221 -0.29369 M(16-20)
X03 0.07475 0.43906 -0.30323 M(21-30)
X04 -0.05062 0.47805 -0.20440 M(31-40)
X05 -0.19046 0.37274 0.04777 M(41-)
X06 0.28720 -0.18091 0.04945 F(-15)
X07 0.19335 -0.16071 0.17125 F(16-20)
X08 0.04957 -0.13707 0.32839 F(21-30)
X09 -0.06623 -0.06897 0.40164 F(31-40)
X10 -0.17252 -0.16424 0.59935 F(41-)
SAS システム 11
20:31 Wednesday, July 13, 2005
OBS X01 X02 X03 X04 X05 X06 X07 X08
1 7.69 7.31 7.47 7.76 7.87 7.51 7.24 7.70
2 6.59 5.56 6.21 6.04 5.81 6.64 6.11 6.53
3 4.55 4.18 4.36 4.25 4.53 4.60 3.66 4.04
4 6.78 6.11 6.30 5.98 5.56 6.37 6.29 5.43
5 6.47 6.24 6.02 5.42 5.88 6.00 5.60 4.60
6 6.96 6.81 6.91 6.48 6.23 7.09 7.27 7.13
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
1 7.91 7.95 0.66848 1.82089 1.58151
2 6.44 6.64 0.16753 -0.19985 1.19223
3 3.68 4.43 -1.03317 -1.44074 -0.47196
4 5.32 5.28 0.63828 0.22675 -0.50040
5 5.40 5.95 0.18212 0.09192 -0.20819
6 6.86 7.36 0.74098 0.36705 1.34820
SAS システム 12
20:31 Wednesday, July 13, 2005
OBS X01 X02 X03 X04 X05 X06 X07 X08
7 6.57 5.70 5.89 5.16 5.30 6.07 5.56 4.50
8 7.32 6.95 6.02 4.98 4.88 6.82 6.40 5.53
9 6.51 6.15 5.51 4.68 4.16 5.17 4.81 4.70
10 6.86 6.05 5.85 6.14 6.75 6.71 5.39 5.42
11 7.04 6.03 6.53 6.02 6.68 6.78 5.91 6.26
12 6.59 6.30 6.29 5.94 6.10 5.93 5.52 5.35
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
7 4.92 5.33 0.32212 -0.32353 -0.54867
8 5.61 5.33 1.29399 -0.70772 -0.34096
9 4.86 3.82 0.58563 -0.74996 -1.38927
10 6.03 6.59 0.02082 0.39858 0.55099
11 5.76 5.95 0.40333 0.58990 0.17654
12 5.45 5.85 0.19777 0.54869 -0.27747
SAS システム 13
20:31 Wednesday, July 13, 2005
OBS X01 X02 X03 X04 X05 X06 X07 X08
13 5.93 4.76 5.09 5.51 5.79 5.49 4.97 4.69
14 7.00 6.31 6.82 6.26 5.26 6.69 6.27 5.94
15 6.63 5.47 5.54 4.88 4.70 5.89 4.64 4.43
16 6.56 6.57 5.74 4.76 4.39 6.56 6.29 5.61
17 5.80 5.44 4.75 4.69 4.65 5.23 4.83 4.66
18 6.39 6.14 6.21 5.48 5.40 6.32 6.19 6.44
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
13 5.30 5.61 -0.59891 -0.44433 0.31937
14 5.78 5.26 0.91545 0.42234 -0.53556
15 4.00 3.98 0.46237 -0.53286 -1.57500
16 5.22 4.72 1.11088 -1.07750 -0.45395
17 4.72 4.98 -0.13938 -1.22229 -0.20671
18 5.49 5.49 0.56235 -0.28372 0.15357
SAS システム 14
20:31 Wednesday, July 13, 2005
OBS X01 X02 X03 X04 X05 X06 X07 X08
19 7.19 6.66 6.58 5.33 5.03 7.13 7.19 6.62
20 5.76 6.63 7.02 7.37 7.27 5.93 5.89 6.70
21 5.74 5.71 5.93 6.12 6.24 5.42 5.69 6.10
22 5.52 5.28 5.17 4.69 4.87 4.86 4.66 4.10
23 4.89 4.75 5.02 5.14 4.65 4.96 4.17 3.89
24 6.46 6.88 6.93 6.74 6.52 6.14 6.64 5.81
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
19 5.78 5.23 1.42714 -0.49423 -0.05168
20 6.82 6.97 -0.35623 1.77580 0.83460
21 6.25 6.45 -0.47556 0.23363 0.99794
22 4.62 4.10 -0.26665 -0.65259 -0.96309
23 4.61 4.01 -0.63574 -0.58237 -0.93949
24 6.14 6.59 0.33341 1.19569 0.15960
≪略≫
SAS システム 25
20:31 Wednesday, July 13, 2005
OBS X01 X02 X03 X04 X05 X06 X07 X08
85 6.96 5.61 4.34 4.28 4.15 6.46 5.70 5.31
86 5.71 5.58 5.46 5.10 5.57 5.46 5.94 5.19
87 5.30 5.88 5.35 5.24 5.68 5.17 5.91 5.06
88 7.09 6.39 5.60 6.18 5.81 7.12 6.69 5.96
89 6.93 6.73 5.60 5.63 6.13 7.13 6.66 6.42
90 7.46 6.19 5.42 4.70 3.68 7.33 6.73 5.58
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
85 4.77 4.19 0.89484 -2.11006 -0.27929
86 5.78 6.23 -0.28762 -0.71826 0.87305
87 5.56 6.10 -0.40623 -0.50420 0.66559
88 6.28 6.60 0.66657 -0.37147 0.91228
89 6.44 6.50 0.69692 -0.51150 1.12494
90 4.18 3.39 1.90587 -1.55808 -1.44320
SAS システム 26
20:31 Wednesday, July 13, 2005
OBS X01 X02 X03 X04 X05 X06 X07 X08
91 6.38 5.28 5.07 3.96 4.25 6.28 5.21 4.65
92 7.41 6.97 5.91 4.96 4.86 7.19 6.72 5.98
93 7.77 6.47 5.71 5.26 4.91 7.72 7.03 6.42
94 7.96 7.13 6.36 6.18 5.71 7.92 7.59 6.87
95 7.62 6.48 5.75 4.69 4.65 7.82 7.17 6.31
96 8.44 7.52 6.82 6.88 6.05 8.48 8.33 7.25
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
91 4.49 4.64 0.50096 -1.77073 -0.41813
92 5.53 5.52 1.45131 -0.95522 -0.05731
93 5.52 5.46 1.57106 -1.13765 0.18885
94 6.77 6.43 1.56707 -0.24567 0.79587
95 5.53 5.58 1.64304 -1.55742 0.37033
96 6.83 6.55 1.98060 0.32279 0.62116
SAS システム 27
20:31 Wednesday, July 13, 2005
OBS X01 X02 X03 X04 X05 X06 X07 X08
97 7.81 7.31 6.93 7.42 6.60 8.10 7.56 7.79
98 8.29 7.45 7.00 6.76 6.69 8.14 7.09 6.83
99 7.20 6.42 6.23 5.92 5.91 6.98 6.44 6.04
100 7.62 7.33 6.91 6.90 6.47 7.33 6.69 7.23
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
97 7.82 7.67 1.18227 0.72902 1.67725
98 6.83 7.13 1.41828 0.79855 0.65451
99 6.14 6.02 0.78541 0.01100 0.33576
100 6.79 6.70 1.06526 0.90338 0.58077
SAS システム 28
20:31 Wednesday, July 13, 2005
プロット : FACTOR1*FACTOR2. 凡例: A = 1 OBS, B = 2 OBS, ...
2 + A | A
| A AA A A | A A
FACTOR1 | A AA |A A A A A
| A B AA AB B C A A A A A
| A A A B | A AA A A A
0 +-----------------A-A---------B-+AA-AA--A-AA--------------------
| A B AA AA| A A A A A
| A AA A|A C AA
| A A AA A AA B | A A A
| A A | AA A
-2 + A A A| A
--+---------+---------+---------+---------+---------+---------+-
-3 -2 -1 0 1 2 3
FACTOR2
SAS システム 29
20:31 Wednesday, July 13, 2005
プロット : FACTOR2*FACTOR3. 凡例: A = 1 OBS, B = 2 OBS, ...
FACTOR2 | |
4 + |
| |
| A A |
2 + A | A A
| A AA A | AAA A A A
| A A A A A AAA |ABB BAB A B AA
0 +--------------------------A------B--D--AA+ACB-AAABAB-A---------
| A A AAA A C| BA BA C A A
| A A CA A | A B AB A
-2 + A A AA |
--+---------+---------+---------+---------+---------+---------+-
-4 -3 -2 -1 0 1 2
FACTOR3
SAS システム 30
20:31 Wednesday, July 13, 2005
プロット : FACTOR3*FACTOR1. 凡例: A = 1 OBS, B = 2 OBS, ...
FACTOR3 | |
2.5 + |
| A B |A BA A
| A BABA A C ABBAA AAA AB A A A A
0.0 +-------------A-----BA-A-AAA---A--A-A-+-BAAC-AABAA-A--AC-AA-----
| A AA A A A B B| B A ABBB A AA
| A A |A AA A
-2.5 + A A | A
| A |
| |
-5.0 + |
--+-----------+-----------+-----------+-----------+-----------+-
-3 -2 -1 0 1 2
FACTOR1
/* Lesson 13-4 */
/* File Name = les1304.sas 07/14/05 */
data hobby;
infile 'syumi.dat';
input code $ X1-X6;
label X1='M(-29)'
X2='M(30-49)'
X3='M(50-)'
X4='F(-29)'
X5='F(30-49)'
X6='F(50-)';
proc print data=hobby(obs=10);
run;
proc factor data=hobby nfactor=2 out=fscore;
var X1-X6;
run;
proc plot data=fscore; : 回転前
plot factor1*factor2=code/vref=0.0 href=0.0; : コード化した記号
run; :
proc factor data=hobby nfactor=2 rotate=varimax out=fscore2;
var X1-X6;
run;
proc plot data=fscore2; : 回転後
plot factor1*factor2=code/vref=0.0 href=0.0; : コード化した記号
run; :
SAS システム 1
20:31 Wednesday, July 13, 2005
OBS CODE X1 X2 X3 X4 X5 X6
1 A 4.00 4.25 3.83 4.50 4.67 4.00
2 B 4.17 3.89 4.00 4.50 4.17 3.75
3 C 3.83 3.44 2.83 3.57 3.17 1.50
4 D 2.83 4.22 3.83 3.71 3.00 2.25
5 E 4.17 4.11 3.83 3.57 4.00 3.75
6 F 2.33 3.56 3.33 2.93 2.83 2.75
7 G 1.83 2.44 2.33 3.71 3.83 3.75
8 H 2.50 1.89 2.00 4.21 3.17 3.75
9 I 2.00 1.44 2.00 4.07 3.33 3.50
10 J 4.00 3.33 3.33 3.00 3.17 2.25
SAS システム 2
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 6 Average = 1
1 2 3
Eigenvalue 2.7435 1.7477 0.7451
Difference 0.9958 1.0027 0.3571
Proportion 0.4573 0.2913 0.1242
Cumulative 0.4573 0.7485 0.8727
4 5 6
Eigenvalue 0.3879 0.2263 0.1495
Difference 0.1616 0.0768
Proportion 0.0647 0.0377 0.0249
Cumulative 0.9374 0.9751 1.0000
SAS システム 3
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
2 factors will be retained by the NFACTOR criterion.
Factor Pattern
FACTOR1 FACTOR2
X1 0.52708 0.63297 M(-29)
X2 0.59628 0.64623 M(30-49)
X3 0.64192 0.47370 M(50-)
X4 0.82757 -0.35514 F(-29)
X5 0.79607 -0.43033 F(30-49)
X6 0.61604 -0.62750 F(50-)
SAS システム 4
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
Variance explained by each factor
FACTOR1 FACTOR2
2.743514 1.747721
Final Communality Estimates: Total = 4.491236
X1 X2 X3 X4 X5 X6
0.678467 0.773166 0.636447 0.810993 0.818906 0.773257
SAS システム 5
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
Scoring Coefficients Estimated by Regression
Squared Multiple Correlations of the Variables with each Factor
FACTOR1 FACTOR2
1.000000 1.000000
SAS システム 6
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
Standardized Scoring Coefficients
FACTOR1 FACTOR2
X1 0.19212 0.36217 M(-29)
X2 0.21734 0.36976 M(30-49)
X3 0.23398 0.27104 M(50-)
X4 0.30164 -0.20320 F(-29)
X5 0.29016 -0.24622 F(30-49)
X6 0.22454 -0.35904 F(50-)
SAS システム 7
20:31 Wednesday, July 13, 2005
プロット : FACTOR1*FACTOR2. 使用するプロット文字: CODE の値.
(NOTE: 1 オブザベーションを表示していません.)
2 + A B
| | Z E
FACTOR1 | R |
| |
| 3 Q M | DL O
0 +--------------HG------------S-----2--+--F-------C--------------
| I K P | V N
| | U W
| 1|Y
| T X
-2 + 4 |
--+-----------+-----------+-----------+-----------+-----------+-
-3 -2 -1 0 1 2
FACTOR2
SAS システム 8
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 6 Average = 1
1 2 3
Eigenvalue 2.7435 1.7477 0.7451
Difference 0.9958 1.0027 0.3571
Proportion 0.4573 0.2913 0.1242
Cumulative 0.4573 0.7485 0.8727
4 5 6
Eigenvalue 0.3879 0.2263 0.1495
Difference 0.1616 0.0768
Proportion 0.0647 0.0377 0.0249
Cumulative 0.9374 0.9751 1.0000
SAS システム 9
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
2 factors will be retained by the NFACTOR criterion.
Factor Pattern
FACTOR1 FACTOR2
X1 0.52708 0.63297 M(-29)
X2 0.59628 0.64623 M(30-49)
X3 0.64192 0.47370 M(50-)
X4 0.82757 -0.35514 F(-29)
X5 0.79607 -0.43033 F(30-49)
X6 0.61604 -0.62750 F(50-)
SAS システム 10
20:31 Wednesday, July 13, 2005
Initial Factor Method: Principal Components
Variance explained by each factor
FACTOR1 FACTOR2
2.743514 1.747721
Final Communality Estimates: Total = 4.491236
X1 X2 X3 X4 X5 X6
0.678467 0.773166 0.636447 0.810993 0.818906 0.773257
SAS システム 11
20:31 Wednesday, July 13, 2005
Rotation Method: Varimax
Orthogonal Transformation Matrix
1 2
1 0.77751 0.62886
2 -0.62886 0.77751
SAS システム 12
20:31 Wednesday, July 13, 2005
Rotation Method: Varimax
Rotated Factor Pattern
FACTOR1 FACTOR2
X1 0.01176 0.82361 M(-29)
X2 0.05723 0.87743 M(30-49)
X3 0.20121 0.77199 M(50-)
X4 0.86678 0.24430 F(-29)
X5 0.88957 0.16603 F(30-49)
X6 0.87359 -0.10049 F(50-)
Variance explained by each factor
FACTOR1 FACTOR2
2.349707 2.141529
SAS システム 13
20:31 Wednesday, July 13, 2005
Rotation Method: Varimax
Final Communality Estimates: Total = 4.491236
X1 X2 X3 X4 X5 X6
0.678467 0.773166 0.636447 0.810993 0.818906 0.773257
Scoring Coefficients Estimated by Regression
Squared Multiple Correlations of the Variables with each Factor
FACTOR1 FACTOR2
1.000000 1.000000
SAS システム 14
20:31 Wednesday, July 13, 2005
Rotation Method: Varimax
Standardized Scoring Coefficients
FACTOR1 FACTOR2
X1 -0.07838 0.40241 M(-29)
X2 -0.06354 0.42417 M(30-49)
X3 0.01147 0.35788 M(50-)
X4 0.36232 0.03170 F(-29)
X5 0.38045 -0.00897 F(30-49)
X6 0.40037 -0.13795 F(50-)
SAS システム 15
20:31 Wednesday, July 13, 2005
プロット : FACTOR1*FACTOR2. 使用するプロット文字: CODE の値.
2 + |
| | A
FACTOR1 | I H G 3 | R ZB
| Q | E
| K S |M
0 +---------------------P-2--+------------D-------------
| |F CJ L O
| Y | V N
| 4 1 T | U
| X | W
-2 + |
---+-----------+-----------+-----------+-----------+--
-2 -1 0 1 2
FACTOR2