/* Lesson 12-1 */
/* File Name = les1201.sas 07/08/04 */
data gakusei;
infile 'all04a.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
proc print data=gakusei(obs=10);
run;
proc plot data=gakusei; : 散布図
plot shintyou*taijyuu; : 元の変量のプロット
run; :
proc princomp cov data=gakusei out=outprin; : 主成分分析(分散共分散行列)
var shintyou taijyuu; : 2変量
run; :
proc print data=outprin(obs=15); : 結果の出力
run; :
proc plot data=outprin; : 散布図
plot prin2*prin1/vref=0 href=0; : 主成分得点のプロット
run; :
proc sort data=outprin; : 説明のためにソートしてみる
by prin1; : 第一主成分で
run; :
proc print data=outprin; : 体重がややが効いていることの確認
run; :
[備考] 上記のコロン以降は説明のためのものであり、
SAS のプログラムではありません。
SAS システム 2
23:20 Thursday, July 1, 2004
プロット : SHINTYOU*TAIJYUU. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 42 オブザベーションが欠損値です.)
SHINTYOU |
200 +
|
| B A
180 + A ADCDDDBEA B B A A
| AAEDKHTMGGCEDCB BA
| AEAGIFEDCBBEAA AA A A
160 + ADCEBHDDAABB
| A EB DCDA A A
| A AAA
140 +
---+-----------+-----------+-----------+-----------+--
20 40 60 80 100
TAIJYUU
SAS システム 3
23:20 Thursday, July 1, 2004
Principal Component Analysis
254 Observations
2 Variables
Simple Statistics
SHINTYOU TAIJYUU
Mean 168.6755906 58.73031496
StD 8.0222834 9.22268568
SAS システム 4
23:20 Thursday, July 1, 2004
Principal Component Analysis
Covariance Matrix
SHINTYOU TAIJYUU
SHINTYOU 64.35703028 52.38386543
TAIJYUU 52.38386543 85.05793113
Total Variance = 149.41496141
Eigenvalues of the Covariance Matrix
Eigenvalue Difference Proportion Cumulative
PRIN1 128.104 106.793 0.857371 0.85737
PRIN2 21.311 . 0.142629 1.00000
SAS システム 5
23:20 Thursday, July 1, 2004
Principal Component Analysis
Eigenvectors
PRIN1 PRIN2
SHINTYOU 0.634885 0.772606
TAIJYUU 0.772606 -.634885
SAS システム 6
23:20 Thursday, July 1, 2004
S
H T K C
I A J O A T
N I K I D R S P P
T J Y T U R U R R
O S Y Y O A K Y U I I
B E O U U K A E W N N
S X U U I U I R A 1 2
1 F 145.0 38.0 . J 10000 . -31.0477 -5.13053
2 F 148.0 42.0 . J 50000 . -26.0526 -5.35226
3 F 148.0 43.0 80 J 50000 DoCoMo 4000 -25.2800 -5.98714
4 F 148.9 . . J 60000 . . .
5 F 149.0 45.0 . G 60000 . -23.0999 -6.48431
6 F 150.0 46.0 86 40000 . -21.6924 -6.34659
7 F 151.0 50.0 . G 60000 J-PHONE . -17.9671 -8.11352
8 F 151.7 41.5 80 J 35000 . -24.0898 -2.17617
SAS システム 8
23:20 Thursday, July 1, 2004
プロット : PRIN2*PRIN1. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 42 オブザベーションが欠損値です.)
PRIN2 | |
10 + A A BA
| AA BB BABBAAACA B
| A BC ACAGCCFFCGGFC CD A
0 +-------------BBA-AACBAI-BDBFEEDFCACCBAE--A-----A---------
| AA CABCB ABCA BB DDBADB A A
| A AAAA AAA A A ABBAAC A BA AABA
-10 + A A | AB A
| |
| | A
-20 + | A A
---+------------+------------+------------+------------+--
-40 -20 0 20 40
PRIN1
SAS システム 9
23:20 Thursday, July 1, 2004
S
H T K C
I A J O A T
N I K I D R S P P
T J Y T U R U R R
O S Y Y O A K Y U I I
B E O U U K A E W N N
S X U U I U I R A 1 2
1 F 148.9 . . J 60000 . . .
2 F 153.0 . . G 120000 DoCoMo 200 . .
3 F 155.0 . . J 20000 . . .
<中略>
SAS システム 43
23:20 Thursday, July 1, 2004
S
H T K C
I A J O A T
N I K I D R S P P
T J Y T U R U R R
O S Y Y O A K Y U I I
B E O U U K A E W N N
S X U U I U I R A 1 2
273 M 182.0 64.0 . G 0 . 12.5309 6.9489
274 M 165.0 78.0 . G 0 2098 12.5543 -15.0738
275 M 170.0 74.0 90 J 0 . 12.6383 -8.6713
276 M 178.0 68.0 . J 100000 DoCoMo 4000 13.0817 1.3189
277 M 175.0 74.0 . J 0 . 15.8127 -4.8082
278 M 180.0 70.0 94 G 70000 au 5000 15.8967 1.5944
279 M 180.0 70.0 . J 40000 au 4000 15.8967 1.5944
280 M 180.0 70.0 . . . 15.8967 1.5944
281 M 180.0 70.0 . J 40000 DoCoMo 6500 15.8967 1.5944
282 M 178.7 71.2 95 0 . 15.9985 -0.1719
283 M 173.5 76.5 . G 100000 . 16.7919 -7.5543
284 M 184.0 68.0 85 30000 . 16.8911 5.9545
285 M 182.0 70.0 90 G 100000 . 17.1665 3.1396
286 M 185.0 68.0 93 J 0 . 17.5259 6.7272
287 M 175.0 77.0 95 G 130000 . 18.1305 -6.7129
288 M 179.1 74.2 . 0 au 4000 18.5703 -1.7675
289 M 176.5 78.0 96 J 10000 . 19.8555 -6.1889
290 M 177.0 78.0 . J 40000 . 20.1729 -5.8026
291 M 181.5 74.5 . G 120000 au 3000 20.3258 -0.1037
292 M 178.0 78.0 110 G 50000 . 20.8078 -5.0299
293 M 169.3 88.5 94 J 0 . 23.3967 -18.4179
294 M 186.0 82.0 . J 0 . 28.9773 -1.3886
295 M 182.0 90.0 100 J 40000 . 32.6186 -9.5581
296 M 178.0 100.0 112 G 60000 . 37.8051 -18.9974
/* Lesson 12-2 */
/* File Name = les1202.sas 07/08/04 */
data gakusei;
infile 'all04a.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
proc print data=gakusei(obs=10);
run;
proc princomp cov data=gakusei out=outprin; : 主成分分析(分散共分散行列)
var shintyou taijyuu kyoui; : 3変量
run; :
proc print data=outprin(obs=15); : 結果の出力
run; :
proc plot data=outprin; : 散布図
plot prin2*prin1/vref=0 href=0; : 主成分得点のプロット
plot prin3*prin2/vref=0 href=0; :
plot prin3*prin1/vref=0 href=0; :
run; :
SAS システム 3
23:20 Thursday, July 1, 2004
Principal Component Analysis
93 Observations
3 Variables
Simple Statistics
SHINTYOU TAIJYUU KYOUI
Mean 167.7602151 59.19569892 86.72043011
StD 8.6631170 10.96744108 7.89794358
SAS システム 4
23:20 Thursday, July 1, 2004
Principal Component Analysis
Covariance Matrix
SHINTYOU TAIJYUU KYOUI
SHINTYOU 75.0495956 67.9609140 27.0767999
TAIJYUU 67.9609140 120.2847639 58.5074801
KYOUI 27.0767999 58.5074801 62.3775129
SAS システム 5
23:20 Thursday, July 1, 2004
Principal Component Analysis
Total Variance = 257.71187237
Eigenvalues of the Covariance Matrix
Eigenvalue Difference Proportion Cumulative
PRIN1 198.838 157.733 0.771550 0.77155
PRIN2 41.104 23.334 0.159497 0.93105
PRIN3 17.770 . 0.068953 1.00000
SAS システム 6
23:20 Thursday, July 1, 2004
Principal Component Analysis
Eigenvectors
PRIN1 PRIN2 PRIN3
SHINTYOU 0.505436 -.687310 0.521669
TAIJYUU 0.752185 0.054727 -.656675
KYOUI 0.422790 0.724299 0.544646
SAS システム 7
23:20 Thursday, July 1, 2004
S
H T K C
I A J O A T
N I K I D R S P P P
T J Y T U R U R R R
O S Y Y O A K Y U I I I
B E O U U K A E W N N N
S X U U I U I R A 1 2 3
1 F 145.0 38.0 . J 10000 . . . .
2 F 148.0 42.0 . J 50000 . . . .
3 F 148.0 43.0 80 J 50000 DoCoMo 4000 -25.0110 7.8275 -3.33323
4 F 148.9 . . J 60000 . . . .
5 F 149.0 45.0 . G 60000 . . . .
6 F 150.0 46.0 86 40000 . -19.2069 10.9628 -0.99204
7 F 151.0 50.0 . G 60000 J-PHONE . . . .
8 F 151.7 41.5 80 J 35000 . -24.2692 5.2023 -0.41804
9 F 152.0 35.0 77 J 60000 DoCoMo 2000 -30.2751 2.4675 2.37292
10 F 152.0 43.0 . J 20000 au 3500 . . .
11 F 153.0 41.0 . J 125000 No . . . .
12 F 153.0 42.0 . G 0 Vodafone 1000 . . .
13 F 153.0 46.5 87 G 10000 . -16.8917 9.6525 0.78927
14 F 153.0 50.0 . G 70000 DoCoMo 10000 . . .
15 F 153.0 55.0 78 J 30000 . -14.3032 3.5990 -9.69428
SAS システム 9
23:20 Thursday, July 1, 2004
プロット : PRIN2*PRIN1. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 203 オブザベーションが欠損値です.)
PRIN2 | |
20 + |
| A A | A A A A
| B A BCABA AA | A AB A A
0 +--------A---A---BABCCBAD--D-BF-ACBB-AAAA--------A----------------
| A A A BAAB BAC AA
| A |A A A
-20 + A |
| |
| |
-40 + |
---+-----------+-----------+-----------+-----------+-----------+--
-40 -20 0 20 40 60
PRIN1
SAS システム 10
23:20 Thursday, July 1, 2004
プロット : PRIN3*PRIN2. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 203 オブザベーションが欠損値です.)
PRIN3 | |
10 + |
| A A AB A| A A A
| A A A AA AEAE|C AA ACC A
0 +--------------------------A-A--B--A--CDB-BB-CAAA--AA-------------
| AA AA CC C AAA A
| A B A | B A A
-10 + | A
| A | A
| |
-20 + |
---+-----------+-----------+-----------+-----------+-----------+--
-30 -20 -10 0 10 20
PRIN2
SAS システム 11
23:20 Thursday, July 1, 2004
プロット : PRIN3*PRIN1. 凡例: A = 1 OBS, B = 2 OBS, ...
(NOTE: 203 オブザベーションが欠損値です.)
PRIN3 | |
10 + |
| A AA A C A A
| A A AACAA C A CE BAAA CA
0 +-----------A--A-CBAACAAA--CA-DAAA--------------------------------
| AA AA A A A | AA ABBA AA
| A A AA A A A A
-10 + A |
| A | A
| |
-20 + |
---+-----------+-----------+-----------+-----------+-----------+--
-40 -20 0 20 40 60
PRIN1
/* Lesson 12-3 */
/* File Name = les1203.sas 07/08/04 */
data gakusei;
infile 'all04a.prn'
firstobs=2;
input sex $ shintyou taijyuu kyoui
jitaku $ kodukai carryer $ tsuuwa;
proc print data=gakusei(obs=10);
run; :
proc princomp data=gakusei out=outprin; : 相関係数を使って
var shintyou taijyuu kyoui; :
run; :
proc print data=outprin(obs=15);
run;
proc plot data=outprin;
plot prin2*prin1/vref=0 href=0;
plot prin3*prin2/vref=0 href=0;
plot prin3*prin1/vref=0 href=0;
run;
SAS システム 3
23:20 Thursday, July 1, 2004
Principal Component Analysis
93 Observations
3 Variables
Simple Statistics
SHINTYOU TAIJYUU KYOUI
Mean 167.7602151 59.19569892 86.72043011
StD 8.6631170 10.96744108 7.89794358
SAS システム 4
23:20 Thursday, July 1, 2004
Principal Component Analysis
Correlation Matrix
SHINTYOU TAIJYUU KYOUI
SHINTYOU 1.0000 0.7153 0.3957
TAIJYUU 0.7153 1.0000 0.6754
KYOUI 0.3957 0.6754 1.0000
SAS システム 5
23:20 Thursday, July 1, 2004
Principal Component Analysis
Eigenvalues of the Correlation Matrix
Eigenvalue Difference Proportion Cumulative
PRIN1 2.20118 1.59596 0.733725 0.73373
PRIN2 0.60522 0.41161 0.201739 0.93546
PRIN3 0.19361 . 0.064535 1.00000
SAS システム 6
23:20 Thursday, July 1, 2004
Principal Component Analysis
Eigenvectors
PRIN1 PRIN2 PRIN3
SHINTYOU 0.554911 -.676206 0.484582
TAIJYUU 0.633593 -.033949 -.772921
KYOUI 0.539105 0.735930 0.409601
/* Lesson 13-1 */
/* File Name = les1301.sas 07/15/04 */
data food; :
infile 'food.dat'; : ファイルの読み込み
input X01-X10; : 変量リスト、連続的に
label X01='M(-15)' : 各変量に解りやすい名前を付ける
X02='M(16-20)' : M : 男性
X03='M(21-30)' : F : 女性
X04='M(31-40)' : ()内 : 年齢
X05='M(41-)' :
X06='F(-15)' :
X07='F(16-20)' :
X08='F(21-30)' :
X09='F(31-40)' :
X10='F(41-)'; :
:
proc print data=food(obs=10); : データの表示
run; :
proc factor data=food; : オプションを付けないと主成分分析
var X01-X10; : 解析に使う変量リスト
run; :
SAS システム 1
11:34 Sunday, July 11, 2004
OBS X01 X02 X03 X04 X05 X06 X07 X08 X09 X10
1 7.69 7.31 7.47 7.76 7.87 7.51 7.24 7.70 7.91 7.95
2 6.59 5.56 6.21 6.04 5.81 6.64 6.11 6.53 6.44 6.64
3 4.55 4.18 4.36 4.25 4.53 4.60 3.66 4.04 3.68 4.43
4 6.78 6.11 6.30 5.98 5.56 6.37 6.29 5.43 5.32 5.28
5 6.47 6.24 6.02 5.42 5.88 6.00 5.60 4.60 5.40 5.95
SAS システム 2
11:34 Sunday, July 11, 2004
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 10 Average = 1
1 2 3 4 5
Eigenvalue 6.8280 1.7619 0.7545 0.2624 0.1216
Difference 5.0661 1.0074 0.4921 0.1408 0.0236
Proportion 0.6828 0.1762 0.0754 0.0262 0.0122
Cumulative 0.6828 0.8590 0.9344 0.9607 0.9728
6 7 8 9 10
Eigenvalue 0.0980 0.0721 0.0441 0.0358 0.0219
Difference 0.0259 0.0280 0.0083 0.0139
Proportion 0.0098 0.0072 0.0044 0.0036 0.0022
Cumulative 0.9826 0.9898 0.9942 0.9978 1.0000
SAS システム 3
11:34 Sunday, July 11, 2004
Initial Factor Method: Principal Components
2 factors will be retained by the MINEIGEN criterion.
SAS システム 4
11:34 Sunday, July 11, 2004
Initial Factor Method: Principal Components
Factor Pattern
FACTOR1 FACTOR2
X01 0.74741 -0.59244 M(-15)
X02 0.86579 -0.31836 M(16-20)
X03 0.84491 0.22079 M(21-30)
X04 0.78216 0.47602 M(31-40)
X05 0.68129 0.67325 M(41-)
X06 0.80647 -0.54140 F(-15)
X07 0.89959 -0.33542 F(16-20)
X08 0.90901 -0.04289 F(21-30)
X09 0.90316 0.21817 F(31-40)
X10 0.79262 0.35477 F(41-)
SAS システム 5
11:34 Sunday, July 11, 2004
Initial Factor Method: Principal Components
Variance explained by each factor
FACTOR1 FACTOR2
6.827955 1.761873
Final Communality Estimates: Total = 8.589828
X01 X02 X03 X04 X05
0.909618 0.850950 0.762624 0.838371 0.917413
X06 X07 X08 X09 X10
0.943520 0.921775 0.828147 0.863298 0.754112
/* Lesson 13-2 */
/* File Name = les1302.sas 07/15/04 */
data food;
infile 'food.dat';
input X01-X10;
label X01='M(-15)'
X02='M(16-20)'
X03='M(21-30)'
X04='M(31-40)'
X05='M(41-)'
X06='F(-15)'
X07='F(16-20)'
X08='F(21-30)'
X09='F(31-40)'
X10='F(41-)';
proc print data=food(obs=10);
run; :
proc factor data=food nfactor=3 out=fscore; : 因子数3、出力の保存
var X01-X10; :
run; :
proc plot data=fscore; :
plot factor1*factor2/vref=0.0 href=0.0; : 第1因子 x 第2因子、軸
plot factor2*factor3/vref=0.0 href=0.0; : 第2因子 x 第3因子、軸
run; :
SAS システム 2
11:34 Sunday, July 11, 2004
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 10 Average = 1
1 2 3 4 5
Eigenvalue 6.8280 1.7619 0.7545 0.2624 0.1216
Difference 5.0661 1.0074 0.4921 0.1408 0.0236
Proportion 0.6828 0.1762 0.0754 0.0262 0.0122
Cumulative 0.6828 0.8590 0.9344 0.9607 0.9728
6 7 8 9 10
Eigenvalue 0.0980 0.0721 0.0441 0.0358 0.0219
Difference 0.0259 0.0280 0.0083 0.0139
Proportion 0.0098 0.0072 0.0044 0.0036 0.0022
Cumulative 0.9826 0.9898 0.9942 0.9978 1.0000
SAS システム 3
11:34 Sunday, July 11, 2004
Initial Factor Method: Principal Components
3 factors will be retained by the NFACTOR criterion.
SAS システム 4
11:34 Sunday, July 11, 2004
Initial Factor Method: Principal Components
Factor Pattern
FACTOR1 FACTOR2 FACTOR3
X01 0.74741 -0.59244 0.16808 M(-15)
X02 0.86579 -0.31836 0.29190 M(16-20)
X03 0.84491 0.22079 0.38417 M(21-30)
X04 0.78216 0.47602 0.32604 M(31-40)
X05 0.68129 0.67325 0.11067 M(41-)
X06 0.80647 -0.54140 -0.07270 F(-15)
X07 0.89959 -0.33542 -0.14888 F(16-20)
X08 0.90901 -0.04289 -0.25110 F(21-30)
X09 0.90316 0.21817 -0.27989 F(31-40)
X10 0.79262 0.35477 -0.45389 F(41-)
SAS システム 5
11:34 Sunday, July 11, 2004
Initial Factor Method: Principal Components
Variance explained by each factor
FACTOR1 FACTOR2 FACTOR3
6.827955 1.761873 0.754451
Final Communality Estimates: Total = 9.344279
X01 X02 X03 X04 X05
0.937870 0.936157 0.910210 0.944673 0.929662
X06 X07 X08 X09 X10
0.948805 0.943939 0.891197 0.941637 0.960129
SAS システム 6
11:34 Sunday, July 11, 2004
Initial Factor Method: Principal Components
Scoring Coefficients Estimated by Regression
Squared Multiple Correlations of the Variables with each Factor
FACTOR1 FACTOR2 FACTOR3
1.000000 1.000000 1.000000
SAS システム 7
11:34 Sunday, July 11, 2004
Initial Factor Method: Principal Components
Standardized Scoring Coefficients
FACTOR1 FACTOR2 FACTOR3
X01 0.10946 -0.33626 0.22279 M(-15)
X02 0.12680 -0.18069 0.38691 M(16-20)
X03 0.12374 0.12531 0.50920 M(21-30)
X04 0.11455 0.27018 0.43215 M(31-40)
X05 0.09978 0.38212 0.14670 M(41-)
X06 0.11811 -0.30729 -0.09636 F(-15)
X07 0.13175 -0.19038 -0.19733 F(16-20)
X08 0.13313 -0.02434 -0.33282 F(21-30)
X09 0.13227 0.12383 -0.37099 F(31-40)
X10 0.11609 0.20136 -0.60162 F(41-)
SAS システム 8
11:34 Sunday, July 11, 2004
プロット : FACTOR1*FACTOR2. 凡例: A = 1 OBS, B = 2 OBS, ...
5 + |
| |
FACTOR1 | |
| A A |A B A
| A A A AA BBA AAADA BB A AA A A A
0 +----A-------A----AAB--AAA----ACA---BABAAA-B--AAAAA--AA-A--A--A-
| A AA A A A A A A A | ABAAABB BA A A A
| A A A | A A
| | A
| |
-5 + |
--+-----------+-----------+-----------+-----------+-----------+-
-3 -2 -1 0 1 2
FACTOR2
SAS システム 9
11:34 Sunday, July 11, 2004
プロット : FACTOR2*FACTOR3. 凡例: A = 1 OBS, B = 2 OBS, ...
FACTOR2 | |
2.5 + |
| A A A A | AC A A A
| AA ABA ADABA AB| B A AA AA A
0.0 +---BA----AAAA-CBA--A-+-ECB-A------A----A--------A--------------
| A A BAA ABB AB AABAB
| B AA B AAAAA A A
-2.5 + | A
| |
| |
-5.0 + |
--+---------+---------+---------+---------+---------+---------+-
-2 -1 0 1 2 3 4
FACTOR3
/* Lesson 13-3 */
/* File Name = les1303.sas 07/15/04 */
data food;
infile 'food.dat';
input X01-X10;
label X01='M(-15)'
X02='M(16-20)'
X03='M(21-30)'
X04='M(31-40)'
X05='M(41-)'
X06='F(-15)'
X07='F(16-20)'
X08='F(21-30)'
X09='F(31-40)'
X10='F(41-)';
proc print data=food(obs=10);
run;
proc factor data=food nfactor=3 rotate=varimax out=fscore2;
var X01-X10; : 回転の指定
run; :
proc print data=fscore2;
run;
proc plot data=fscore2;
plot factor1*factor2/vref=0.0 href=0.0;
plot factor2*factor3/vref=0.0 href=0.0;
plot factor3*factor1/vref=0.0 href=0.0;
run;
SAS システム 6
11:35 Sunday, July 11, 2004
Rotation Method: Varimax
Orthogonal Transformation Matrix
1 2 3
1 0.65751 0.53576 0.52976
2 -0.73452 0.61238 0.29234
3 0.16779 0.58134 -0.79617
SAS システム 7
11:35 Sunday, July 11, 2004
Rotation Method: Varimax
Rotated Factor Pattern
FACTOR1 FACTOR2 FACTOR3
X01 0.95480 0.13534 0.08893 M(-15)
X02 0.85209 0.43859 0.13319 M(16-20)
X03 0.45782 0.81121 0.20628 M(21-30)
X04 0.21933 0.90009 0.29393 M(31-40)
X05 -0.02799 0.84163 0.46962 M(41-)
X06 0.91574 0.05827 0.32684 F(-15)
X07 0.81289 0.19001 0.49704 F(16-20)
X08 0.58706 0.31477 0.66894 F(21-30)
X09 0.38662 0.45477 0.76508 F(31-40)
X10 0.18442 0.37804 0.88499 F(41-)
SAS システム 8
11:35 Sunday, July 11, 2004
Rotation Method: Varimax
Variance explained by each factor
FACTOR1 FACTOR2 FACTOR3
3.923686 2.875550 2.545044
Final Communality Estimates: Total = 9.344279
X01 X02 X03 X04 X05
0.937870 0.936157 0.910210 0.944673 0.929662
X06 X07 X08 X09 X10
0.948805 0.943939 0.891197 0.941637 0.960129
SAS システム 9
11:35 Sunday, July 11, 2004
Rotation Method: Varimax
Scoring Coefficients Estimated by Regression
Squared Multiple Correlations of the Variables with each Factor
FACTOR1 FACTOR2 FACTOR3
1.000000 1.000000 1.000000
SAS システム 10
11:35 Sunday, July 11, 2004
Rotation Method: Varimax
Standardized Scoring Coefficients
FACTOR1 FACTOR2 FACTOR3
X01 0.35634 -0.01776 -0.21769 M(-15)
X02 0.28101 0.18221 -0.29369 M(16-20)
X03 0.07475 0.43906 -0.30323 M(21-30)
X04 -0.05062 0.47805 -0.20440 M(31-40)
X05 -0.19046 0.37274 0.04777 M(41-)
X06 0.28720 -0.18091 0.04945 F(-15)
X07 0.19335 -0.16071 0.17125 F(16-20)
X08 0.04957 -0.13707 0.32839 F(21-30)
X09 -0.06623 -0.06897 0.40164 F(31-40)
X10 -0.17252 -0.16424 0.59935 F(41-)
SAS システム 11
11:35 Sunday, July 11, 2004
OBS X01 X02 X03 X04 X05 X06 X07 X08
1 7.69 7.31 7.47 7.76 7.87 7.51 7.24 7.70
2 6.59 5.56 6.21 6.04 5.81 6.64 6.11 6.53
3 4.55 4.18 4.36 4.25 4.53 4.60 3.66 4.04
4 6.78 6.11 6.30 5.98 5.56 6.37 6.29 5.43
5 6.47 6.24 6.02 5.42 5.88 6.00 5.60 4.60
6 6.96 6.81 6.91 6.48 6.23 7.09 7.27 7.13
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
1 7.91 7.95 0.66848 1.82089 1.58151
2 6.44 6.64 0.16753 -0.19985 1.19223
3 3.68 4.43 -1.03317 -1.44074 -0.47196
4 5.32 5.28 0.63828 0.22675 -0.50040
5 5.40 5.95 0.18212 0.09192 -0.20819
6 6.86 7.36 0.74098 0.36705 1.34820
SAS システム 12
11:35 Sunday, July 11, 2004
OBS X01 X02 X03 X04 X05 X06 X07 X08
7 6.57 5.70 5.89 5.16 5.30 6.07 5.56 4.50
8 7.32 6.95 6.02 4.98 4.88 6.82 6.40 5.53
9 6.51 6.15 5.51 4.68 4.16 5.17 4.81 4.70
10 6.86 6.05 5.85 6.14 6.75 6.71 5.39 5.42
11 7.04 6.03 6.53 6.02 6.68 6.78 5.91 6.26
12 6.59 6.30 6.29 5.94 6.10 5.93 5.52 5.35
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
7 4.92 5.33 0.32212 -0.32353 -0.54867
8 5.61 5.33 1.29399 -0.70772 -0.34096
9 4.86 3.82 0.58563 -0.74996 -1.38927
10 6.03 6.59 0.02082 0.39858 0.55099
11 5.76 5.95 0.40333 0.58990 0.17654
12 5.45 5.85 0.19777 0.54869 -0.27747
SAS システム 13
11:35 Sunday, July 11, 2004
OBS X01 X02 X03 X04 X05 X06 X07 X08
13 5.93 4.76 5.09 5.51 5.79 5.49 4.97 4.69
14 7.00 6.31 6.82 6.26 5.26 6.69 6.27 5.94
15 6.63 5.47 5.54 4.88 4.70 5.89 4.64 4.43
16 6.56 6.57 5.74 4.76 4.39 6.56 6.29 5.61
17 5.80 5.44 4.75 4.69 4.65 5.23 4.83 4.66
18 6.39 6.14 6.21 5.48 5.40 6.32 6.19 6.44
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
13 5.30 5.61 -0.59891 -0.44433 0.31937
14 5.78 5.26 0.91545 0.42234 -0.53556
15 4.00 3.98 0.46237 -0.53286 -1.57500
16 5.22 4.72 1.11088 -1.07750 -0.45395
17 4.72 4.98 -0.13938 -1.22229 -0.20671
18 5.49 5.49 0.56235 -0.28372 0.15357
SAS システム 14
11:35 Sunday, July 11, 2004
OBS X01 X02 X03 X04 X05 X06 X07 X08
19 7.19 6.66 6.58 5.33 5.03 7.13 7.19 6.62
20 5.76 6.63 7.02 7.37 7.27 5.93 5.89 6.70
21 5.74 5.71 5.93 6.12 6.24 5.42 5.69 6.10
22 5.52 5.28 5.17 4.69 4.87 4.86 4.66 4.10
23 4.89 4.75 5.02 5.14 4.65 4.96 4.17 3.89
24 6.46 6.88 6.93 6.74 6.52 6.14 6.64 5.81
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
19 5.78 5.23 1.42714 -0.49423 -0.05168
20 6.82 6.97 -0.35623 1.77580 0.83460
21 6.25 6.45 -0.47556 0.23363 0.99794
22 4.62 4.10 -0.26665 -0.65259 -0.96309
23 4.61 4.01 -0.63574 -0.58237 -0.93949
24 6.14 6.59 0.33341 1.19569 0.15960
(略)
SAS システム 25
11:35 Sunday, July 11, 2004
OBS X01 X02 X03 X04 X05 X06 X07 X08
85 6.96 5.61 4.34 4.28 4.15 6.46 5.70 5.31
86 5.71 5.58 5.46 5.10 5.57 5.46 5.94 5.19
87 5.30 5.88 5.35 5.24 5.68 5.17 5.91 5.06
88 7.09 6.39 5.60 6.18 5.81 7.12 6.69 5.96
89 6.93 6.73 5.60 5.63 6.13 7.13 6.66 6.42
90 7.46 6.19 5.42 4.70 3.68 7.33 6.73 5.58
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
85 4.77 4.19 0.89484 -2.11006 -0.27929
86 5.78 6.23 -0.28762 -0.71826 0.87305
87 5.56 6.10 -0.40623 -0.50420 0.66559
88 6.28 6.60 0.66657 -0.37147 0.91228
89 6.44 6.50 0.69692 -0.51150 1.12494
90 4.18 3.39 1.90587 -1.55808 -1.44320
SAS システム 26
11:35 Sunday, July 11, 2004
OBS X01 X02 X03 X04 X05 X06 X07 X08
91 6.38 5.28 5.07 3.96 4.25 6.28 5.21 4.65
92 7.41 6.97 5.91 4.96 4.86 7.19 6.72 5.98
93 7.77 6.47 5.71 5.26 4.91 7.72 7.03 6.42
94 7.96 7.13 6.36 6.18 5.71 7.92 7.59 6.87
95 7.62 6.48 5.75 4.69 4.65 7.82 7.17 6.31
96 8.44 7.52 6.82 6.88 6.05 8.48 8.33 7.25
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
91 4.49 4.64 0.50096 -1.77073 -0.41813
92 5.53 5.52 1.45131 -0.95522 -0.05731
93 5.52 5.46 1.57106 -1.13765 0.18885
94 6.77 6.43 1.56707 -0.24567 0.79587
95 5.53 5.58 1.64304 -1.55742 0.37033
96 6.83 6.55 1.98060 0.32279 0.62116
SAS システム 27
11:35 Sunday, July 11, 2004
OBS X01 X02 X03 X04 X05 X06 X07 X08
97 7.81 7.31 6.93 7.42 6.60 8.10 7.56 7.79
98 8.29 7.45 7.00 6.76 6.69 8.14 7.09 6.83
99 7.20 6.42 6.23 5.92 5.91 6.98 6.44 6.04
100 7.62 7.33 6.91 6.90 6.47 7.33 6.69 7.23
OBS X09 X10 FACTOR1 FACTOR2 FACTOR3
97 7.82 7.67 1.18227 0.72902 1.67725
98 6.83 7.13 1.41828 0.79855 0.65451
99 6.14 6.02 0.78541 0.01100 0.33576
100 6.79 6.70 1.06526 0.90338 0.58077
SAS システム 28
11:35 Sunday, July 11, 2004
プロット : FACTOR1*FACTOR2. 凡例: A = 1 OBS, B = 2 OBS, ...
2 + A | A
| A AA A A | A A
FACTOR1 | A AA |A A A A A
| A B AA AB B C A A A A A
| A A A B | A AA A A A
0 +-----------------A-A---------B-+AA-AA--A-AA--------------------
| A B AA AA| A A A A A
| A AA A|A C AA
| A A AA A AA B | A A A
| A A | AA A
-2 + A A A| A
--+---------+---------+---------+---------+---------+---------+-
-3 -2 -1 0 1 2 3
FACTOR2
SAS システム 29
11:35 Sunday, July 11, 2004
プロット : FACTOR2*FACTOR3. 凡例: A = 1 OBS, B = 2 OBS, ...
FACTOR2 | |
4 + |
| |
| A A |
2 + A | A A
| A AA A | AAA A A A
| A A A A A AAA |ABB BAB A B AA
0 +--------------------------A------B--D--AA+ACB-AAABAB-A---------
| A A AAA A C| BA BA C A A
| A A CA A | A B AB A
-2 + A A AA |
--+---------+---------+---------+---------+---------+---------+-
-4 -3 -2 -1 0 1 2
FACTOR3
SAS システム 30
11:35 Sunday, July 11, 2004
プロット : FACTOR3*FACTOR1. 凡例: A = 1 OBS, B = 2 OBS, ...
FACTOR3 | |
2.5 + |
| A B |A BA A
| A BABA A C ABBAA AAA AB A A A A
0.0 +-------------A-----BA-A-AAA---A--A-A-+-BAAC-AABAA-A--AC-AA-----
| A AA A A A B B| B A ABBB A AA
| A A |A AA A
-2.5 + A A | A
| A |
| |
-5.0 + |
--+-----------+-----------+-----------+-----------+-----------+-
-3 -2 -1 0 1 2
FACTOR1
/* Lesson 13-4 */
/* File Name = les1304.sas 07/15/04 */
data hobby;
infile 'syumi.dat';
input code $ X1-X6;
label X1='M(-29)'
X2='M(30-49)'
X3='M(50-)'
X4='F(-29)'
X5='F(30-49)'
X6='F(50-)';
proc print data=hobby(obs=10);
run;
proc factor data=hobby nfactor=2 out=fscore;
var X1-X6;
run;
proc plot data=fscore; : 回転前
plot factor1*factor2=code/vref=0.0 href=0.0; : コード化した記号
run; :
proc factor data=hobby nfactor=2 rotate=varimax out=fscore2;
var X1-X6;
run;
proc plot data=fscore2; : 回転後
plot factor1*factor2=code/vref=0.0 href=0.0; : コード化した記号
run; :
SAS システム 1
11:35 Sunday, July 11, 2004
OBS CODE X1 X2 X3 X4 X5 X6
1 A 4.00 4.25 3.83 4.50 4.67 4.00
2 B 4.17 3.89 4.00 4.50 4.17 3.75
3 C 3.83 3.44 2.83 3.57 3.17 1.50
4 D 2.83 4.22 3.83 3.71 3.00 2.25
5 E 4.17 4.11 3.83 3.57 4.00 3.75
SAS システム 2
11:35 Sunday, July 11, 2004
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 6 Average = 1
1 2 3
Eigenvalue 2.7435 1.7477 0.7451
Difference 0.9958 1.0027 0.3571
Proportion 0.4573 0.2913 0.1242
Cumulative 0.4573 0.7485 0.8727
4 5 6
Eigenvalue 0.3879 0.2263 0.1495
Difference 0.1616 0.0768
Proportion 0.0647 0.0377 0.0249
Cumulative 0.9374 0.9751 1.0000
SAS システム 3
11:35 Sunday, July 11, 2004
Initial Factor Method: Principal Components
2 factors will be retained by the NFACTOR criterion.
Factor Pattern
FACTOR1 FACTOR2
X1 0.52708 0.63297 M(-29)
X2 0.59628 0.64623 M(30-49)
X3 0.64192 0.47370 M(50-)
X4 0.82757 -0.35514 F(-29)
X5 0.79607 -0.43033 F(30-49)
X6 0.61604 -0.62750 F(50-)
SAS システム 4
11:35 Sunday, July 11, 2004
Initial Factor Method: Principal Components
Variance explained by each factor
FACTOR1 FACTOR2
2.743514 1.747721
Final Communality Estimates: Total = 4.491236
X1 X2 X3 X4 X5 X6
0.678467 0.773166 0.636447 0.810993 0.818906 0.773257
SAS システム 5
11:35 Sunday, July 11, 2004
Initial Factor Method: Principal Components
Scoring Coefficients Estimated by Regression
Squared Multiple Correlations of the Variables with each Factor
FACTOR1 FACTOR2
1.000000 1.000000
SAS システム 6
11:35 Sunday, July 11, 2004
Initial Factor Method: Principal Components
Standardized Scoring Coefficients
FACTOR1 FACTOR2
X1 0.19212 0.36217 M(-29)
X2 0.21734 0.36976 M(30-49)
X3 0.23398 0.27104 M(50-)
X4 0.30164 -0.20320 F(-29)
X5 0.29016 -0.24622 F(30-49)
X6 0.22454 -0.35904 F(50-)
SAS システム 7
11:35 Sunday, July 11, 2004
プロット : FACTOR1*FACTOR2. 使用するプロット文字: CODE の値.
(NOTE: 1 オブザベーションを表示していません.)
2 + A B
| | Z E
FACTOR1 | R |
| |
| 3 Q M | DL O
0 +--------------HG------------S-----2--+--F-------C--------------
| I K P | V N
| | U W
| 1|Y
| T X
-2 + 4 |
--+-----------+-----------+-----------+-----------+-----------+-
-3 -2 -1 0 1 2
FACTOR2
SAS システム 8
11:35 Sunday, July 11, 2004
Initial Factor Method: Principal Components
Prior Communality Estimates: ONE
Eigenvalues of the Correlation Matrix: Total = 6 Average = 1
1 2 3
Eigenvalue 2.7435 1.7477 0.7451
Difference 0.9958 1.0027 0.3571
Proportion 0.4573 0.2913 0.1242
Cumulative 0.4573 0.7485 0.8727
4 5 6
Eigenvalue 0.3879 0.2263 0.1495
Difference 0.1616 0.0768
Proportion 0.0647 0.0377 0.0249
Cumulative 0.9374 0.9751 1.0000
SAS システム 9
11:35 Sunday, July 11, 2004
Initial Factor Method: Principal Components
2 factors will be retained by the NFACTOR criterion.
Factor Pattern
FACTOR1 FACTOR2
X1 0.52708 0.63297 M(-29)
X2 0.59628 0.64623 M(30-49)
X3 0.64192 0.47370 M(50-)
X4 0.82757 -0.35514 F(-29)
X5 0.79607 -0.43033 F(30-49)
X6 0.61604 -0.62750 F(50-)
SAS システム 10
11:35 Sunday, July 11, 2004
Initial Factor Method: Principal Components
Variance explained by each factor
FACTOR1 FACTOR2
2.743514 1.747721
Final Communality Estimates: Total = 4.491236
X1 X2 X3 X4 X5 X6
0.678467 0.773166 0.636447 0.810993 0.818906 0.773257
SAS システム 11
11:35 Sunday, July 11, 2004
Rotation Method: Varimax
Orthogonal Transformation Matrix
1 2
1 0.77751 0.62886
2 -0.62886 0.77751
SAS システム 12
11:35 Sunday, July 11, 2004
Rotation Method: Varimax
Rotated Factor Pattern
FACTOR1 FACTOR2
X1 0.01176 0.82361 M(-29)
X2 0.05723 0.87743 M(30-49)
X3 0.20121 0.77199 M(50-)
X4 0.86678 0.24430 F(-29)
X5 0.88957 0.16603 F(30-49)
X6 0.87359 -0.10049 F(50-)
Variance explained by each factor
FACTOR1 FACTOR2
2.349707 2.141529
SAS システム 13
11:35 Sunday, July 11, 2004
Rotation Method: Varimax
Final Communality Estimates: Total = 4.491236
X1 X2 X3 X4 X5 X6
0.678467 0.773166 0.636447 0.810993 0.818906 0.773257
Scoring Coefficients Estimated by Regression
Squared Multiple Correlations of the Variables with each Factor
FACTOR1 FACTOR2
1.000000 1.000000
SAS システム 14
11:35 Sunday, July 11, 2004
Rotation Method: Varimax
Standardized Scoring Coefficients
FACTOR1 FACTOR2
X1 -0.07838 0.40241 M(-29)
X2 -0.06354 0.42417 M(30-49)
X3 0.01147 0.35788 M(50-)
X4 0.36232 0.03170 F(-29)
X5 0.38045 -0.00897 F(30-49)
X6 0.40037 -0.13795 F(50-)
SAS システム 15
11:35 Sunday, July 11, 2004
プロット : FACTOR1*FACTOR2. 使用するプロット文字: CODE の値.
2 + |
| | A
FACTOR1 | I H G 3 | R ZB
| Q | E
| K S |M
0 +---------------------P-2--+------------D-------------
| |F CJ L O
| Y | V N
| 4 1 T | U
| X | W
-2 + |
---+-----------+-----------+-----------+-----------+--
-2 -1 0 1 2
FACTOR2