/* Lesson 11-1 */ /* File Name = les1101.sas 07/01/04 */ data gakusei; infile 'all04a.prn' firstobs=2; input sex $ shintyou taijyuu kyoui jitaku $ kodukai carryer $ tsuuwa; if sex^='M' & sex^='F' then delete; proc print data=gakusei(obs=10); run; proc reg data=gakusei; : 回帰分析 model taijyuu=shintyou; : 変量を指定 output out=outreg1 predicted=pred1 residual=resid1; : 結果項目の保存 run; : : proc print data=outreg1(obs=15); : 表示してみる run; : : proc plot data=outreg1; : 散布図を描く plot taijyuu*shintyou/vaxis=20 to 100 by 20; : 体重と身長(縦軸指定) plot pred1*taijyuu; : 予測値と観測値 plot resid1*pred1 /vref=0; : 残差と予測値(残差解析)(水平軸指定) plot resid1*shintyou/vref=0; : 残差と説明変数(残差解析) plot resid1*taijyuu /vref=0; : 残差と目的変数(残差解析) run; : : proc univariate data=outreg1 plot normal; : 残差を正規プロットして確かめる var resid1; : run; :[備考] 上記のコロン以降は説明のためのものであり、 SAS のプログラムではありません。
where shintyou^=. and taijyuu^=.;
SAS システム 1 14:49 Wednesday, June 30, 2004 OBS SEX SHINTYOU TAIJYUU KYOUI JITAKU KODUKAI CARRYER TSUUWA 1 F 145.0 38.0 . J 10000 . 2 F 148.0 42.0 . J 50000 . 3 F 148.0 43.0 80 J 50000 DoCoMo 4000 4 F 148.9 . . J 60000 . 5 F 149.0 45.0 . G 60000 . 6 F 150.0 46.0 86 40000 . 7 F 151.0 50.0 . G 60000 J-PHONE . 8 F 151.7 41.5 80 J 35000 . 9 F 152.0 35.0 77 J 60000 DoCoMo 2000 10 F 152.0 43.0 . J 20000 au 3500 SAS システム 2 14:49 Wednesday, June 30, 2004 Model: MODEL1 Dependent Variable: TAIJYUU Analysis of Variance Sum of Mean Source DF Squares Square F Value Prob>F Model 1 10789.17582 10789.17582 252.411 0.0001 Error 251 10728.86228 42.74447 C Total 252 21518.03810 Root MSE 6.53793 R-square 0.5014 Dep Mean 58.72530 Adj R-sq 0.4994 C.V. 11.13307 SAS システム 3 14:49 Wednesday, June 30, 2004 Parameter Estimates Parameter Standard T for H0: Variable DF Estimate Error Parameter=0 Prob > |T| INTERCEP 1 -78.584367 8.65241903 -9.082 0.0001 SHINTYOU 1 0.814033 0.05123749 15.887 0.0001 SAS システム 4 14:49 Wednesday, June 30, 2004 S H T K C I A J O A T R N I K I D R S P E T J Y T U R U R S O S Y Y O A K Y U E I B E O U U K A E W D D S X U U I U I R A 1 1 1 F 145.0 38.0 . J 10000 . 39.4504 -1.4504 2 F 148.0 42.0 . J 50000 . 41.8925 0.1075 3 F 148.0 43.0 80 J 50000 DoCoMo 4000 41.8925 1.1075 4 F 148.9 . . J 60000 . 42.6251 . 5 F 149.0 45.0 . G 60000 . 42.7065 2.2935 6 F 150.0 46.0 86 40000 . 43.5206 2.4794 7 F 151.0 50.0 . G 60000 J-PHONE . 44.3346 5.6654 8 F 151.7 41.5 80 J 35000 . 44.9044 -3.4044 9 F 152.0 35.0 77 J 60000 DoCoMo 2000 45.1486 -10.1486 10 F 152.0 43.0 . J 20000 au 3500 45.1486 -2.1486 11 F 153.0 41.0 . J 125000 No . 45.9627 -4.9627 12 F 153.0 42.0 . G 0 Vodafone 1000 45.9627 -3.9627 13 F 153.0 46.5 87 G 10000 . 45.9627 0.5373 14 F 153.0 50.0 . G 70000 DoCoMo 10000 45.9627 4.0373 15 F 153.0 55.0 78 J 30000 . 45.9627 9.0373 SAS システム 6 14:49 Wednesday, June 30, 2004 プロット : TAIJYUU*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ... (NOTE: 40 オブザベーションが欠損値です.) TAIJYUU | 100 + A | A A 80 + A A A A B A A | A B CBDDC DCEAD CCF B AA 60 + A AA D B CABBF HBOHKBIFFDC BADBB A | AAA CABDA CCH F EBCGF DAAAB BA 40 + A B C BA BA | 20 + | --+-----------+-----------+-----------+-----------+-----------+- 140 150 160 170 180 190 SHINTYOU SAS システム 7 14:49 Wednesday, June 30, 2004 プロット : PRED1*TAIJYUU. 凡例: A = 1 OBS, B = 2 OBS, ... (NOTE: 40 オブザベーションが欠損値です.) 80 + | PRED1 | A B A | A ADAAFAB F B A A A | ABBBBLFDDBGBA A BB 60 + BEBJHGGJBGBAADABA A | AF EHCF BCAAD A | BBDCCEAC AAA | BAABBACA A A | A CAAB B A 40 + A AA ---+------------+------------+------------+------------+-- 20 40 60 80 100 TAIJYUU SAS システム 8 14:49 Wednesday, June 30, 2004 プロット : RESID1*PRED1. 凡例: A = 1 OBS, B = 2 OBS, ... (NOTE: 40 オブザベーションが欠損値です.) | R 50 + e | s | A A i 25 + A d | A B A A AAA A u | A A A A BBAB BBBCDCDAA BA A A a 0 +-------------A--BAA-BCBCDABBI-DEBCCGHBMHHHGHBEBBHA-AA------------ l | AA BAA C BA AGDDACCEBBCE BBACA | A -25 + ---+-----------+-----------+-----------+-----------+-----------+-- 30 40 50 60 70 80 Predicted Value of TAIJYUU SAS システム 9 14:49 Wednesday, June 30, 2004 プロット : RESID1*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ... (NOTE: 40 オブザベーションが欠損値です.) | R 50 + e | s | A A i 25 + A d | A B A A A B A u | A A A A B BAB B BBCDC CBA BA A A a 0 +--------A---BAA-B-DBBDA-BBI-D-EBCCG-HBMFIAHGHBE-BBH-A--AA-------- l | A A BA AAB B A AFE DACCDABBCCB BABAB A | A -25 + ---+-----------+-----------+-----------+-----------+-----------+-- 140 150 160 170 180 190 SHINTYOU SAS システム 10 14:49 Wednesday, June 30, 2004 プロット : RESID1*TAIJYUU. 凡例: A = 1 OBS, B = 2 OBS, ... (NOTE: 40 オブザベーションが欠損値です.) | R 50 + e | s | A A i 25 + A d | A BABB A u | A AAABBAIBCCFAC A A a 0 +--------------A-CBBDDDKIDMGISOFKCI-E--------------------- l | A CABCH CKDHCCFCAA | A -25 + ---+------------+------------+------------+------------+-- 20 40 60 80 100 TAIJYUU SAS システム 11 14:49 Wednesday, June 30, 2004 Univariate Procedure Variable=RESID1 Residual Moments N 253 Sum Wgts 253 Mean 0 Sum 0 Std Dev 6.524941 Variance 42.57485 Skewness 1.414355 Kurtosis 4.06384 USS 10728.86 CSS 10728.86 CV . Std Mean 0.41022 T:Mean=0 0 Pr>|T| 1.0000 Num ^= 0 253 Num > 0 110 M(Sign) -16.5 Pr>=|M| 0.0440 Sgn Rank -1902.5 Pr>=|S| 0.1026 W:Normal 0.921391 Pr< W 0.0001 SAS システム 12 14:49 Wednesday, June 30, 2004 Univariate Procedure Variable=RESID1 Residual Quantiles(Def=5) 100% Max 33.6865 99% 22.26893 75% Q3 2.756665 95% 11.6865 50% Med -1.17317 90% 8.268929 25% Q1 -4.01173 10% -7.08019 0% Min -13.3486 5% -8.7556 1% -10.6153 Range 47.03508 Q3-Q1 6.768395 Mode -2.24333 SAS システム 13 14:49 Wednesday, June 30, 2004 Univariate Procedure Variable=RESID1 Residual Extremes Lowest Obs Highest Obs -13.3486( 274) 16.82683( 137) -10.8714( 226) 20.43037( 280) -10.6153( 169) 22.26893( 98) -10.1486( 9) 29.26859( 146) -9.56963( 277) 33.6865( 258) Missing Value . Count 40 % Count/Nobs 13.65 SAS システム 15 14:49 Wednesday, June 30, 2004 Univariate Procedure Variable=RESID1 Residual Histogram # Boxplot 35+* 1 * .* 3 0 .***** 13 0 .******************************* 93 +--+--+ .*********************************************** 139 *-----* -15+** 4 | ----+----+----+----+----+----+----+----+----+-- * may represent up to 3 counts SAS システム 16 14:49 Wednesday, June 30, 2004 Univariate Procedure Variable=RESID1 Residual Normal Probability Plot 35+ * | ** * | *******++++ | ++************** | ************************ -15+*+**++++++ +----+----+----+----+----+----+----+----+----+----+ -2 -1 0 +1 +2
[注意] 誤差は「説明変量」の軸と垂直に取ることに注意せよ。 誤差は測定時に混入していると考えてモデルが構築されているから。
/* Lesson 11-2 */ /* File Name = les1102.sas 07/01/04 */ data gakusei; infile 'all04a.prn' firstobs=2; input sex $ shintyou taijyuu kyoui jitaku $ kodukai carryer $ tsuuwa; if sex^='M' & sex^='F' then delete; proc print data=gakusei(obs=10); run; proc reg data=gakusei; : 回帰分析 model taijyuu=shintyou kyoui; : 複数変量を指定 output out=outreg1 predicted=pred1 residual=resid1; : 結果項目の保存 run; : proc print data=outreg1(obs=15); run; : proc plot data=outreg1; : 散布図を描く where shintyou^=. and taijyuu^=. and kyoui^=.; : 解析に使ったデータのみ plot taijyuu*shintyou; : plot taijyuu*kyoui; : plot taijyuu*pred1; : 観測値と予測値 plot resid1*pred1 /vref=0; : 残差と予測値(残差解析) plot resid1*shintyou/vref=0; : 残差と説明変量(残差解析) plot resid1*kyoui /vref=0; : 残差と説明変量(残差解析) plot resid1*taijyuu /vref=0; : 残差と目的変量(残差解析) run; : : proc univariate data=outreg1 plot normal; : 残差を正規プロットして確かめる var resid1; : run; :
SAS システム 2 19:47 Wednesday, June 23, 2004 Model: MODEL1 Dependent Variable: TAIJYUU Analysis of Variance Sum of Mean Source DF Squares Square F Value Prob>F Model 2 7682.00845 3841.00423 102.149 0.0001 Error 90 3384.18983 37.60211 C Total 92 11066.19828 Root MSE 6.13206 R-square 0.6942 Dep Mean 59.19570 Adj R-sq 0.6874 C.V. 10.35896 SAS システム 3 19:47 Wednesday, June 23, 2004 Parameter Estimates Parameter Standard T for H0: Variable DF Estimate Error Parameter=0 Prob > |T| INTERCEP 1 -109.642478 12.60968451 -8.695 0.0001 SHINTYOU 1 0.672459 0.08035699 8.368 0.0001 KYOUI 1 0.646057 0.08814219 7.330 0.0001 SAS システム 4 19:47 Wednesday, June 23, 2004 S H T K C I A J O A T R N I K I D R S P E T J Y T U R U R S O S Y Y O A K Y U E I B E O U U K A E W D D S X U U I U I R A 1 1 1 F 145.0 38.0 . J 10000 . . . 2 F 148.0 42.0 . J 50000 . . . 3 F 148.0 43.0 80 J 50000 DoCoMo 4000 41.5660 1.4340 4 F 148.9 . . J 60000 . . . 5 F 149.0 45.0 . G 60000 . . . 6 F 150.0 46.0 86 40000 . 46.7873 -0.7873 7 F 151.0 50.0 . G 60000 J-PHONE . . . 8 F 151.7 41.5 80 J 35000 . 44.0541 -2.5541 9 F 152.0 35.0 77 J 60000 DoCoMo 2000 42.3177 -7.3177 10 F 152.0 43.0 . J 20000 au 3500 . . 11 F 153.0 41.0 . J 125000 No . . . 12 F 153.0 42.0 . G 0 Vodafone 1000 . . 13 F 153.0 46.5 87 G 10000 . 49.4507 -2.9507 14 F 153.0 50.0 . G 70000 DoCoMo 10000 . . 15 F 153.0 55.0 78 J 30000 . 43.6362 11.3638 SAS システム 6 19:47 Wednesday, June 23, 2004 プロット : TAIJYUU*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ... 100 + A | A A TAIJYUU | A A A | B BABAB AAAAA A B A AA | A A A A B BA BAFBC ABA ABBA 50 + A A ACA ABD C BBACB A | A B A A | | | 0 + --+-----------+-----------+-----------+-----------+-----------+- 140 150 160 170 180 190 SHINTYOU SAS システム 7 19:47 Wednesday, June 23, 2004 プロット : TAIJYUU*KYOUI. 凡例: A = 1 OBS, B = 2 OBS, ... 100 + A | A A TAIJYUU | AA A | A C BBF BAAA A A | A A B C AAC FBI AAA A 50 + A A AA B HCFBBA | A A B A | | | 0 + ---+-------+-------+-------+-------+-------+-------+-------+-- 50 60 70 80 90 100 110 120 KYOUI SAS システム 8 19:47 Wednesday, June 23, 2004 プロット : TAIJYUU*PRED1. 凡例: A = 1 OBS, B = 2 OBS, ... 100 + A | A A TAIJYUU | A A A | A A CBBBB AA CB A | A B AA B AABB BFDABB AB 50 + B BBBC DBCDB B | BAA A | | | 0 + --+---------+---------+---------+---------+---------+---------+- 30 40 50 60 70 80 90 Predicted Value of TAIJYUU SAS システム 9 19:47 Wednesday, June 23, 2004 プロット : RESID1*PRED1. 凡例: A = 1 OBS, B = 2 OBS, ... | R 40 + e | s | A i 20 + A d | A A A A u | A B AA B A A BABA A A a 0 +--------------AAA--BBBB-CAAAAAABB-BDCAB-AA-BB--------A----------- l | A B AABCA B ABAABB ABA A | -20 + ---+---------+---------+---------+---------+---------+---------+-- 30 40 50 60 70 80 90 Predicted Value of TAIJYUU SAS システム 10 19:47 Wednesday, June 23, 2004 プロット : RESID1*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ... | R 40 + e | s | A i 20 + A d | A A A A u | B A A BBBAB AAAA a 0 +------------A-A-A-AAABA-AAC-B-BAABB-A-CAB-BAB-A-B-B-A--A--------- l | A A AA B AA CC A BAA A ABBA A | -20 + ---+-----------+-----------+-----------+-----------+-----------+-- 140 150 160 170 180 190 SHINTYOU SAS システム 11 19:47 Wednesday, June 23, 2004 プロット : RESID1*KYOUI. 凡例: A = 1 OBS, B = 2 OBS, ... | R 40 + e | s | A i 20 + A d | A A A A u | B A A A A B ABD B a 0 +-----------------------B---D-BCDGCCAG-A-AB---B--------A---------- l | AA B CA FABBC AAB A | -20 + -+--------+--------+--------+--------+--------+--------+--------+- 50 60 70 80 90 100 110 120 KYOUI SAS システム 12 19:47 Wednesday, June 23, 2004 プロット : RESID1*TAIJYUU. 凡例: A = 1 OBS, B = 2 OBS, ... | R 40 + e | s | A i 20 + A d | AA A A u | A B AAB B ABBA AA a 0 +----------------AAABCBDCAB-AEDBDAA-D----A---------------- l | A A BDABB B AEAAC A | -20 + ---+------------+------------+------------+------------+-- 20 40 60 80 100 TAIJYUU SAS システム 17 19:47 Wednesday, June 23, 2004 Univariate Procedure Variable=RESID1 Residual Stem Leaf # Boxplot 2 4 1 * 1 8 1 0 1 01134 5 0 0 5556777778888 13 | 0 0000111111233444 16 +--+--+ -0 44433333333333332222222221111111000 35 *-----* -0 998777776666666555555 21 | -1 0 1 | ----+----+----+----+----+----+----+ Multiply Stem.Leaf by 10**+1 SAS システム 18 19:47 Wednesday, June 23, 2004 Univariate Procedure Variable=RESID1 Residual Normal Probability Plot 22.5+ * | * + | *+**+++++ | ********+ | +++****** | ************ |* * ** *+******* -12.5+ ++++++++ +----+----+----+----+----+----+----+----+----+----+ -2 -1 0 +1 +2
/* Lesson 11-3 */ /* File Name = les1103.sas 07/01/04 */ data gakusei; infile 'all04a.prn' firstobs=2; input sex $ shintyou taijyuu kyoui jitaku $ kodukai carryer $ tsuuwa; if sex^='M' & sex^='F' then delete; : 性別不明は除外 if shintyou=. | taijyuu=. | kyoui=. then delete; : 欠損のあるデータは除外 proc print data=gakusei(obs=10); run; proc corr data=gakusei; : 相関係数 where sex='M'; : 男性について run; : : proc reg data=gakusei; : 回帰分析 model taijyuu=shintyou kyoui; : where sex='M'; : 男性について output out=outreg1 predicted=pred1 residual=resid1; : run; : proc print data=outreg1(obs=15); run; proc plot data=outreg1; where sex='M'; : 対象データについて plot taijyuu*shintyou; plot taijyuu*kyoui; plot taijyuu*pred1; plot resid1*(pred1 shintyou kyoui taijyuu)/vref=0; : まとめて記述 /* plot resid1*pred1 /vref=0; plot resid1*shintyou/vref=0; plot resid1*kyoui /vref=0; plot resid1*taijyuu /vref=0; */ run; proc univariate data=outreg1 plot normal; var resid1; run;
SAS システム 2 14:53 Tuesday, June 29, 2004 Correlation Analysis 5 'VAR' Variables: SHINTYOU TAIJYUU KYOUI KODUKAI TSUUWA Simple Statistics Variable N Mean Std Dev Sum Minimum Maximum SHINTYOU 61 172.3 6.2101 10513.1 156.0 185.0 TAIJYUU 61 64.6344 9.2524 3942.7 46.0000 100.0 KYOUI 61 88.7049 8.6146 5411.0 56.0000 112.0 KODUKAI 57 54491.2 57395.6 3106000 0 300000 TSUUWA 5 8200.0 3271.1 41000.0 5000.0 13000.0 SAS システム 3 14:53 Tuesday, June 29, 2004 Correlation Analysis Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / Number of Observations SHINTYOU TAIJYUU KYOUI KODUKAI TSUUWA SHINTYOU 1.00000 0.42019 0.22042 0.11293 -0.19869 0.0 0.0007 0.0878 0.4029 0.7487 61 61 61 57 5 TAIJYUU 0.42019 1.00000 0.66894 -0.08201 0.17683 0.0007 0.0 0.0001 0.5442 0.7760 61 61 61 57 5 KYOUI 0.22042 0.66894 1.00000 -0.11888 0.14486 0.0878 0.0001 0.0 0.3785 0.8162 61 61 61 57 5 KODUKAI 0.11293 -0.08201 -0.11888 1.00000 -0.58004 0.4029 0.5442 0.3785 0.0 0.3053 57 57 57 57 5 TSUUWA -0.19869 0.17683 0.14486 -0.58004 1.00000 0.7487 0.7760 0.8162 0.3053 0.0 5 5 5 5 5 SAS システム 6 14:53 Tuesday, June 29, 2004 Model: MODEL1 Dependent Variable: TAIJYUU Analysis of Variance Sum of Mean Source DF Squares Square F Value Prob>F Model 2 2700.06291 1350.03146 32.138 0.0001 Error 58 2436.39479 42.00681 C Total 60 5136.45770 Root MSE 6.48127 R-square 0.5257 Dep Mean 64.63443 Adj R-sq 0.5093 C.V. 10.02758 SAS システム 7 14:53 Tuesday, June 29, 2004 Parameter Estimates Parameter Standard T for H0: Variable DF Estimate Error Parameter=0 Prob > |T| INTERCEP 1 -66.687175 23.51117249 -2.836 0.0063 SHINTYOU 1 0.427106 0.13813439 3.092 0.0031 KYOUI 1 0.650603 0.09957815 6.534 0.0001 SAS システム 10 14:53 Tuesday, June 29, 2004 プロット : TAIJYUU*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ... TAIJYUU | 100 + A | A A | 75 + A A A A A AA | B B A C A A A A A A D A A A | A A A B A B A D B C A AAA A AA A 50 + A B A | | 25 + --+---------+---------+---------+---------+---------+---------+- 155 160 165 170 175 180 185 SHINTYOU SAS システム 11 14:53 Tuesday, June 29, 2004 プロット : TAIJYUU*KYOUI. 凡例: A = 1 OBS, B = 2 OBS, ... TAIJYUU | 100 + A | A A | 75 + AA BA A A | A C BAH BA B A | A A A C AAC EBE AA A 50 + A A A A | | 25 + ---+-------+-------+-------+-------+-------+-------+-------+-- 50 60 70 80 90 100 110 120 KYOUI SAS システム 12 14:53 Tuesday, June 29, 2004 プロット : TAIJYUU*PRED1. 凡例: A = 1 OBS, B = 2 OBS, ... TAIJYUU | 100 + A | A A | 75 + AA AAAA A | AA A DABACC A AB | A AA AAAAAABBDDB BA 50 + A A A A | | 25 + --+-----------+-----------+-----------+-----------+-----------+- 40 50 60 70 80 90 Predicted Value of TAIJYUU SAS システム 13 14:53 Tuesday, June 29, 2004 プロット : RESID1*PRED1. 凡例: A = 1 OBS, B = 2 OBS, ... | R 40 + e | s | i 20 + A A d | A A u | A A A AA A CBA AA a 0 +---------------A---A----A-AAAAABBAAC--A-BA---------A------------- l | A A A AADBB BD B | -20 + ---+-----------+-----------+-----------+-----------+-----------+-- 40 50 60 70 80 90 Predicted Value of TAIJYUU SAS システム 14 14:53 Tuesday, June 29, 2004 プロット : RESID1*SHINTYOU. 凡例: A = 1 OBS, B = 2 OBS, ... | R 40 + e | s | i 20 + A A d | A A u | A B A C A B A A AA a 0 +----A-------A-----------A-B---A-B-A-A-A--AB---A-AA--B-A-A---A---- l | A B A A B C A B A A A BA A A | -20 + ---+---------+---------+---------+---------+---------+---------+-- 155 160 165 170 175 180 185 SHINTYOU SAS システム 15 14:53 Tuesday, June 29, 2004 プロット : RESID1*KYOUI. 凡例: A = 1 OBS, B = 2 OBS, ... | R 40 + e | s | i 20 + A A d | A A u | A A A A B BD B a 0 +-----------------------B---B---ABABAE-A-AB---A--------A---------- l | A B BBBAE AAB A A | -20 + -+--------+--------+--------+--------+--------+--------+--------+- 50 60 70 80 90 100 110 120 KYOUI SAS システム 16 14:53 Tuesday, June 29, 2004 プロット : RESID1*TAIJYUU. 凡例: A = 1 OBS, B = 2 OBS, ... | R 40 + e | s | i 20 + A A d | A A u | A A A B A AC A A AA a 0 +----------A-------A---DACA-DA-A-BB------A------------------------ l | A A BA B FABABA A | -20 + ---+---------+---------+---------+---------+---------+---------+-- 40 50 60 70 80 90 100 TAIJYUU SAS システム 17 14:53 Tuesday, June 29, 2004 Univariate Procedure Variable=RESID1 Residual Moments N 61 Sum Wgts 61 Mean 0 Sum 0 Std Dev 6.372329 Variance 40.60658 Skewness 1.224565 Kurtosis 1.785444 USS 2436.395 CSS 2436.395 CV . Std Mean 0.815893 T:Mean=0 0 Pr>|T| 1.0000 Num ^= 0 61 Num > 0 24 M(Sign) -6.5 Pr>=|M| 0.1237 Sgn Rank -115.5 Pr>=|S| 0.4113 W:Normal 0.909005 Pr< W 0.0001 SAS システム 20 14:53 Tuesday, June 29, 2004 Univariate Procedure Variable=RESID1 Residual Stem Leaf # Boxplot 2 2 1 0 1 8 1 0 1 024 3 | 0 5555566777 10 | 0 001123444 9 +--+--+ -0 44443333322211111100 20 *-----* -0 99888766655555555 17 +-----+ ----+----+----+----+ Multiply Stem.Leaf by 10**+1 SAS システム 21 14:53 Tuesday, June 29, 2004 Univariate Procedure Variable=RESID1 Residual Normal Probability Plot 22.5+ * | * ++ | **++++++ 7.5+ ++*****+ | +++******* | *********** -7.5+ * * **+******* +----+----+----+----+----+----+----+----+----+----+ -2 -1 0 +1 +2
where sex='M' and taijyuu<85;
/* Lesson 12-1 */ /* File Name = les1201.sas 06/26/03 */ data air; infile 'usair2.prn'; input id $ y x1 x2 x3 x4 x5 x6; /* label id='Cities (都市名)' y='SO2 of air in micrograms per cubic metre (SO2 濃度)' x1='Average annual temperature in F (気温)' x2='Number of manufacturing enterprises employing 20 or more workers (製造業数)' x3='Population size (1970 census); in thousands (人口)' x4='Average annual wind speed in miles per hour (風速)' x5='Average annual precipitation in inches (降雨量)' x6='Average number of days with precipitation per year (降雨日数)' ; */ proc print data=air(obs=10); run; proc corr data=air; run; proc reg data=air; : model y=x1 x2 x3 x4 x5 x6; : フルモデル output out=outreg1 predicted=pred1 residual=resid1; : run; : proc print data=outreg1(obs=15); run; proc plot data=outreg1; : 残差解析用 plot resid1*pred1 /vref=0; : plot resid1*x1 /vref=0; : ズラズラと列記 plot resid1*x2 /vref=0; : plot resid1*x3 /vref=0; : plot resid1*x4 /vref=0; : plot resid1*x5 /vref=0; : plot resid1*x6 /vref=0; : plot resid1*y /vref=0; : run; : proc univariate data=outreg1 plot normal; : 残差解析 var resid1; : run; : proc reg data=air; : model y=x1--x6 / selection=stepwise; : 逐次増減法 output out=outreg2 predicted=pred2 residual=resid2; : 連続した変数の指定方法(簡略形) run; : proc print data=outreg2(obs=15); run; proc plot data=outreg2; : 残差解析用 plot resid2*pred2 /vref=0; : /* : plot resid2*(x1 x2 x3 x4 x5 x6) /vref=0; : 簡略形(上と比較せよ) */ : plot resid2*(x1--x6) /vref=0; : 簡略形(これも同じ意味) plot resid2*y /vref=0; : run; : proc univariate data=outreg2 plot normal; : 残差解析 var resid2; : run; :
SAS システム 1 08:33 Thursday, December 18, 2003 OBS ID Y X1 X2 X3 X4 X5 X6 1 Phoenix 10 70.3 213 582 6.0 7.05 36 2 Little_R 13 61.0 91 132 8.2 48.52 100 3 San_Fran 12 56.7 453 716 8.7 20.66 67 4 Denver 17 51.9 454 515 9.0 12.95 86 5 Hartford 56 49.1 412 158 9.0 43.37 127 6 Wilmingt 36 54.0 80 80 9.0 40.25 114 7 Washingt 29 57.3 434 757 9.3 38.89 111 8 Jacksonv 14 68.4 136 529 8.8 54.47 116 9 Miami 10 75.5 207 335 9.0 59.80 128 10 Atlanta 24 61.5 368 497 9.1 48.34 115 SAS システム 2 08:33 Thursday, December 18, 2003 Correlation Analysis 7 'VAR' Variables: Y X1 X2 X3 X4 X5 X6 Simple Statistics Variable N Mean Std Dev Sum Minimum Maximum Y 41 30.0488 23.4723 1232 8.0000 110.0000 X1 41 55.7634 7.2277 2286 43.5000 75.5000 X2 41 463.0976 563.4739 18987 35.0000 3344 X3 41 608.6098 579.1130 24953 71.0000 3369 X4 41 9.4439 1.4286 387.2000 6.0000 12.7000 X5 41 36.7690 11.7715 1508 7.0500 59.8000 X6 41 113.9024 26.5064 4670 36.0000 166.0000 SAS システム 3 08:33 Thursday, December 18, 2003 Correlation Analysis Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 41 Y X1 X2 X3 X4 X5 X6 Y 1.00000 -0.43360 0.64477 0.49378 0.09469 0.05429 0.36956 0.0 0.0046 0.0001 0.0010 0.5559 0.7360 0.0174 X1 -0.43360 1.00000 -0.19004 -0.06268 -0.34974 0.38625 -0.43024 0.0046 0.0 0.2340 0.6970 0.0250 0.0126 0.0050 X2 0.64477 -0.19004 1.00000 0.95527 0.23795 -0.03242 0.13183 0.0001 0.2340 0.0 0.0001 0.1341 0.8405 0.4113 X3 0.49378 -0.06268 0.95527 1.00000 0.21264 -0.02612 0.04208 0.0010 0.6970 0.0001 0.0 0.1819 0.8712 0.7939 X4 0.09469 -0.34974 0.23795 0.21264 1.00000 -0.01299 0.16411 0.5559 0.0250 0.1341 0.1819 0.0 0.9357 0.3052 X5 0.05429 0.38625 -0.03242 -0.02612 -0.01299 1.00000 0.49610 0.7360 0.0126 0.8405 0.8712 0.9357 0.0 0.0010 X6 0.36956 -0.43024 0.13183 0.04208 0.16411 0.49610 1.00000 0.0174 0.0050 0.4113 0.7939 0.3052 0.0010 0.0 SAS システム 5 08:33 Thursday, December 18, 2003 Model: MODEL1 Dependent Variable: Y Analysis of Variance Sum of Mean Source DF Squares Square F Value Prob>F Model 6 14754.63603 2459.10601 11.480 0.0001 Error 34 7283.26641 214.21372 C Total 40 22037.90244 Root MSE 14.63604 R-square 0.6695 Dep Mean 30.04878 Adj R-sq 0.6112 C.V. 48.70761 SAS システム 6 08:33 Thursday, December 18, 2003 Parameter Estimates Parameter Standard T for H0: Variable DF Estimate Error Parameter=0 Prob > |T| INTERCEP 1 111.728481 47.31810073 2.361 0.0241 X1 1 -1.267941 0.62117952 -2.041 0.0491 X2 1 0.064918 0.01574825 4.122 0.0002 X3 1 -0.039277 0.01513274 -2.595 0.0138 X4 1 -3.181366 1.81501910 -1.753 0.0887 X5 1 0.512359 0.36275507 1.412 0.1669 X6 1 -0.052050 0.16201386 -0.321 0.7500 SAS システム 7 08:33 Thursday, December 18, 2003 OBS ID Y X1 X2 X3 X4 X5 X6 PRED1 RESID1 1 Phoenix 10 70.3 213 582 6.0 7.05 36 -3.789 13.7891 2 Little_R 13 61.0 91 132 8.2 48.52 100 28.675 -15.6745 3 San_Fran 12 56.7 453 716 8.7 20.66 67 20.542 -8.5421 4 Denver 17 51.9 454 515 9.0 12.95 86 28.694 -11.6941 5 Hartford 56 49.1 412 158 9.0 43.37 127 56.991 -0.9915 6 Wilmingt 36 54.0 80 80 9.0 40.25 114 31.367 4.6326 7 Washingt 29 57.3 434 757 9.3 38.89 111 22.079 6.9212 SAS システム 15 08:33 Thursday, December 18, 2003 プロット : RESID1*Y. 凡例: A = 1 OBS, B = 2 OBS, ... | R 50 + A e | s | A i 25 + d | A A AA u | AA AA A A A A a 0 +------AB------AAABA-A---------A--------------------------A------- l | CAA C A | ABA A -25 + A ---+---------+---------+---------+---------+---------+---------+-- 0 20 40 60 80 100 120 Y SAS システム 19 08:33 Thursday, December 18, 2003 Univariate Procedure Variable=RESID1 Residual Stem Leaf # Boxplot 4 9 1 * 3 0 1 0 2 1 4457 4 | 0 23455567779 11 +--+--+ -0 97665433211100 14 *-----* -1 986652211 9 | -2 3 1 | ----+----+----+----+ Multiply Stem.Leaf by 10**+1 SAS システム 20 08:33 Thursday, December 18, 2003 Univariate Procedure Variable=RESID1 Residual Normal Probability Plot 45+ * | * +++ | ++++++++ | +++**+** | ++********* | ********** | * **+****** -25+ *+++++++ +----+----+----+----+----+----+----+----+----+----+ -2 -1 0 +1 +2 SAS システム 21 08:33 Thursday, December 18, 2003 Stepwise Procedure for Dependent Variable Y Step 1 Variable X2 Entered R-square = 0.41572671 C(p) = 23.10893175 DF Sum of Squares Mean Square F Prob>F Regression 1 9161.74469120 9161.74469120 27.75 0.0001 Error 39 12876.15774782 330.15789097 Total 40 22037.90243902 Parameter Standard Type II Variable Estimate Error Sum of Squares F Prob>F INTERCEP 17.61057438 3.69158676 7513.50474182 22.76 0.0001 X2 0.02685872 0.00509867 9161.74469120 27.75 0.0001 Bounds on condition number: 1, 1 SAS システム 22 08:33 Thursday, December 18, 2003 ------------------------------------------------------------------------------- Step 2 Variable X3 Entered R-square = 0.58632019 C(p) = 7.55859687 DF Sum of Squares Mean Square F Prob>F Regression 2 12921.26717485 6460.63358743 26.93 0.0001 Error 38 9116.63526417 239.91145432 Total 40 22037.90243902 Parameter Standard Type II Variable Estimate Error Sum of Squares F Prob>F INTERCEP 26.32508332 3.84043919 11272.71964000 46.99 0.0001 X2 0.08243410 0.01469656 7548.02378137 31.46 0.0001 X3 -0.05660660 0.01429968 3759.52248365 15.67 0.0003 SAS システム 23 08:33 Thursday, December 18, 2003 Bounds on condition number: 11.43374, 45.73494 ------------------------------------------------------------------------------- Step 3 Variable X6 Entered R-square = 0.61740155 C(p) = 6.36100514 DF Sum of Squares Mean Square F Prob>F Regression 3 13606.23518823 4535.41172941 19.90 0.0001 Error 37 8431.66725079 227.88289867 Total 40 22037.90243902 Parameter Standard Type II Variable Estimate Error Sum of Squares F Prob>F INTERCEP 6.96584888 11.77690656 79.72552238 0.35 0.5578 X2 0.07433399 0.01506613 5547.32153619 24.34 0.0001 X3 -0.04939437 0.01454421 2628.36952166 11.53 0.0016 X6 0.16435940 0.09480151 684.96801338 3.01 0.0913 Bounds on condition number: 12.65025, 78.63322 ------------------------------------------------------------------------------- All variables left in the model are significant at the 0.1500 level. No other variable met the 0.1500 significance level for entry into the model. Summary of Stepwise Procedure for Dependent Variable Y Variable Number Partial Model Step Entered Removed In R**2 R**2 C(p) F Prob>F 1 X2 1 0.4157 0.4157 23.1089 27.7496 0.0001 2 X3 2 0.1706 0.5863 7.5586 15.6705 0.0003 3 X6 3 0.0311 0.6174 6.3610 3.0058 0.0913 SAS システム 25 08:33 Thursday, December 18, 2003 OBS ID Y X1 X2 X3 X4 X5 X6 PRED2 RESID2 1 Phoenix 10 70.3 213 582 6.0 7.05 36 -0.032 10.0316 2 Little_R 13 61.0 91 132 8.2 48.52 100 23.646 -10.6461 3 San_Fran 12 56.7 453 716 8.7 20.66 67 16.285 -4.2849 4 Denver 17 51.9 454 515 9.0 12.95 86 29.410 -12.4103 5 Hartford 56 49.1 412 158 9.0 43.37 127 50.661 5.3392 6 Wilmingt 36 54.0 80 80 9.0 40.25 114 27.698 8.3020 7 Washingt 29 57.3 434 757 9.3 38.89 111 20.079 8.9208 8 Jacksonv 14 68.4 136 529 8.8 54.47 116 10.011 3.9887 9 Miami 10 75.5 207 335 9.0 59.80 128 26.844 -16.8439 10 Atlanta 24 61.5 368 497 9.1 48.34 115 28.673 -4.6731 11 Chicago 110 50.6 3344 3369 10.4 34.44 122 109.181 0.8191 12 Indianap 28 52.3 361 746 9.7 38.74 121 16.840 11.1603 13 Des_Moin 17 49.0 104 201 11.2 30.85 103 21.697 -4.6973 14 Wichita 8 56.6 125 277 12.7 30.58 82 16.053 -8.0528 15 Louisvil 30 55.6 291 593 8.3 43.11 123 19.522 10.4776 SAS システム 33 08:33 Thursday, December 18, 2003 プロット : RESID2*Y. 凡例: A = 1 OBS, B = 2 OBS, ... 50 + A R | e | A s | AA i | A ABA A A A d 0 +--------BA-A--ABA-A-A---------A--------------------------A------- u | AC C B A A a | B A A A l | A | -50 + ---+---------+---------+---------+---------+---------+---------+-- 0 20 40 60 80 100 120 Y SAS システム 37 08:33 Thursday, December 18, 2003 Univariate Procedure Variable=RESID2 Residual Stem Leaf # Boxplot 5 0 1 0 4 3 0 1 | 2 0 1 | 1 001349 6 | 0 011234455589 12 +--+--+ -0 8877755554 10 +-----+ -1 887764321 9 | -2 9 1 | ----+----+----+----+ Multiply Stem.Leaf by 10**+1 SAS システム 38 08:33 Thursday, December 18, 2003 Univariate Procedure Variable=RESID2 Residual Normal Probability Plot 55+ | * | +++++ | +*++*++ 15+ +*****+* | ******** | ******* | * **+****** -25+ * +++++++ +----+----+----+----+----+----+----+----+----+----+ -2 -1 0 +1 +2
/* Lesson 12-2 */ /* File Name = les1202.sas 01/08/04 */ data air; infile 'usair2.prn'; input id $ y x1 x2 x3 x4 x5 x6; proc print data=air(obs=10); run; proc corr data=air; run; proc reg data=air; : model y=x1--x6 / selection=rsquare; : 総当り法 run; :
SAS システム 5 08:33 Thursday, December 18, 2003 N = 41 Regression Models for Dependent Variable: Y Number in R-square Variables in Model Model 1 0.41572671 X2 1 0.24381828 X3 1 0.18800913 X1 1 0.13657727 X6 1 0.00896628 X4 1 0.00294788 X5 -------------------------- 2 0.58632019 X2 X3 2 0.51611499 X1 X2 2 0.49813569 X2 X6 2 0.42138706 X2 X5 2 0.41938296 X2 X4 2 0.40658556 X1 X3 (中略) 2 0.01204980 X4 X5 ----------------------------- 3 0.61740155 X2 X3 X6 3 0.61254683 X1 X2 X3 3 0.59304760 X2 X3 X5 3 0.59298732 X2 X3 X4 3 0.56222293 X1 X2 X5 3 0.54523587 X1 X2 X6 (中略) 3 0.15899893 X4 X5 X6 -------------------------------- 4 0.63964257 X1 X2 X3 X5 4 0.63287070 X1 X2 X3 X4 4 0.62909408 X1 X2 X3 X6 4 0.62847667 X2 X3 X4 X6 4 0.61759495 X2 X3 X5 X6 4 0.60282531 X1 X2 X4 X5 (中略) 4 0.25499437 X1 X4 X5 X6 ----------------------------------- 5 0.66850854 X1 X2 X3 X4 X5 5 0.65012088 X1 X2 X3 X4 X6 5 0.63964824 X1 X2 X3 X5 X6 5 0.62901313 X2 X3 X4 X5 X6 5 0.60403117 X1 X2 X4 X5 X6 5 0.50433666 X1 X3 X4 X5 X6 -------------------------------------- 6 0.66951181 X1 X2 X3 X4 X5 X6 -----------------------------------------